286 research outputs found

    Why Neurons Are Not the Right Level of Abstraction for Implementing Cognition

    No full text
    International audienceThe cortex accounts for 70% of the brain volume. The human cortex is made of micro-columns, arrangements of 110 cortical neurons (Mountcastle), grouped in by the thousand in so-called macro-colums (or columns) which belong to the same functional unit as exemplified by Nobel laureates Hubel and Wiesel with the orientation columns of the primary visual cortex. The cortical column activity does not exhibit the limitations of single neurons: activation can be sustained for very long periods (sec.) instead of been transient and subject to fatigue. Therefore, the cortical column has been proposed as the building block of cognition by several researchers, but to not effect – since explanations about how the cognition works at the column level were missing. Thanks to the Theory of neuronal Cognition, it is no more the case. The cortex functionality is cut into small areas: the cortical maps. Today, about 80 cortical maps are known in the primary and secondary cortex [1]. These maps form a hierarchical organization. A cortical map is a functional structure encompassing several thousands of cortical columns. The function of such maps (also known as Kohonen maps) is to build topographic (i.e., organized and localized) representations of the input stimulii (events). This organization is such that similar inputs activate either the same cortical column or neighboring columns. Also, the more frequent the stimulus, the greater the number of cortical columns involved. Each map acts as a novelty detector and a filter. Events are reported as patterns of activations on various maps, each map specialized in a specific " dimension ". Spatial and temporal coordinates of events are linked to activations within the hippo-campus and define de facto the episodic memory. Learning is achieved at neuronal level using the famous Hebb's law: " Neurons active in the same time frame window reinforce their connections ". This rule does not respect " causality ". This, plus the fact that there is at least as much feedback connections as there are feed-forward ones, explain why a high level cortical activation generates a low level cortical pattern of activations – the same one that would trigger this high level activity. Therefore, our opinion is that the true building block of the cognition is a set of feed-forward and feedback connections between at least two maps, each map a novelty detector

    A Biologically Plausible SOM Representation of the Orthographic Form of 50,000 French Words

    No full text
    International audienceRecently, an important aspect of human visual word recognition has been characterized. The letter position is encoded in our brain using an explicit representation of order based on letter pairs: the open-bigram coding [15]. We hypothesize that spelling has evolved in order to minimize reading errors. Therefore, word recognition using bigrams — instead of letters — should be more efficient. First, we study the influence of the size of the neighborhood, which defines the number of bigrams per word, on the performance of the matching between bigrams and word. Our tests are conducted against one of the best recognition solutions used today by the industry, which matches letters to words. Secondly, we build a cortical map representation of the words in the bigram space — which implies numerous experiments in order to achieve a satisfactory projection. Third, we develop an ultra-fast version of the self-organizing map in order to achieve learning in minutes instead of months

    Assimilation of SLA along track observations in the Mediterranean with an oceanographic model forced by atmospheric pressure

    Get PDF
    A large number of SLA observations at a high along track horizontal resolution are an important ingredient of the data assimilation in the Mediterranean Forecasting System (MFS). Recently, new higher-frequency SLA products have become available, and the atmospheric pressure forcing has been implemented in the numerical model used in the MFS data assimilation system. In a set of numerical experiments, we show that, in order to obtain the most accurate analyses, the ocean model should include the atmospheric pressure forcing and the observations should contain the atmospheric pressure signal. When the model is not forced by the atmospheric pressure, the high-frequency filtering of SLA observations, however, improves the quality of the SLA analyses. It is further shown by comparing the power density spectra of the model fields and observations that the model is able to extract the correct information from noisy observations even without their filtering during the pre-processing

    ART2 et apprentissage de séquences de mots : l'ordre compte

    No full text
    ISBN : 978-2-9532965-0-1Un réseau Adaptive Resonance Theory a été utilisé pour simuler l'apprentissage des formes orthographiques des mots vus par les enfants. Il a été démontré qu'une modélisation par carte auto-organisatrice permet de rendre compte des performances de l'enfant si on conserve les probabilités d'apparition des mots de la base d'apprentissage. Nous montrons dans cet article avec ART2, que l'ordre d'apparition des mots joue aussi un rôle significatif dans la discrimination des mots plus ou moins orthographiquement voisins. Il en découle une hypothése de construction de corpus favorable é l'apprentissage de la lecture de ce type de mots

    Joint analysis of coastal altimetry and high-frequency (HF) radar data: observability of seasonal and mesoscale ocean dynamics in the Bay of Biscay

    Get PDF
    Land-based coastal high-frequency (HF) radar systems provide operational measurements of coastal surface currents (within 1–3&thinsp;m depth) with high spatial (300&thinsp;m–10&thinsp;km) and temporal ( ≤ 1&thinsp;h) sampling resolutions, while the near-continuous altimetry missions provide information, from 1993 until today, on geostrophic currents in the global ocean with typical along-track and temporal sampling resolutions of  &gt; 7&thinsp;km and  &gt; 9 days, respectively. During the last years, the altimetry community has made a step forward in improving these data in the coastal area, where the data present lower quality than in the open ocean. The combination of HF radar and altimetry measurements arises as a promising strategy to improve the continuous monitoring of the coastal area (e.g. by expanding the measurements made by HF radars to adjacent areas covered by the altimetry or by validating/confirming improvements brought by specific coastal algorithms or new altimeter missions). A first step towards this combination is the comparison of both data sets in overlapping areas.In this study, a HF radar system and two Jason-2 satellite altimetry products with different processing are compared over the period from 1 January 2009 to 24 July 2015. The results provide an evaluation of the performance of different coastal altimetry data sets within the study area and a better understanding of the ocean variability contained in the HF radar and altimetry data sets. Both observing systems detect the main mesoscale processes within the study area (the Iberian Poleward Current and mesoscale eddies), and the highest correlations between radar and altimetry (up to 0.64) occur in the slope where the Iberian Poleward Current represents a significant part of the variability in the circulation. Besides, the use of an Ekman model, to add the wind-induced current component to the altimetry-derived geostrophic currents, increases the agreement between both data sets (increasing the correlation by around 10&thinsp;%).</p

    Smart Phone, Smart Science: How the Use of Smartphones Can Revolutionize Research in Cognitive Science

    Get PDF
    Investigating human cognitive faculties such as language, attention, and memory most often relies on testing small and homogeneous groups of volunteers coming to research facilities where they are asked to participate in behavioral experiments. We show that this limitation and sampling bias can be overcome by using smartphone technology to collect data in cognitive science experiments from thousands of subjects from all over the world. This mass coordinated use of smartphones creates a novel and powerful scientific “instrument” that yields the data necessary to test universal theories of cognition. This increase in power represents a potential revolution in cognitive science

    Masked suffix priming and morpheme positional constraints

    Get PDF
    Although masked stem priming (e.g., dealer\u2013DEAL) is one of the most established effects in visual word identification (e.g., Grainger et al., 1991), it is less clear whether primes and targets sharing a suffix (e.g., kindness\u2013WILDNESS) also yield facilitation (Giraudo & Grainger, 2003; Du\uf1abeitia et al., 2008). In a new take on this issue, we show that prime nonwords facilitate lexical decisions to target words ending with the same suffix (sheeter\uac\u2013TEACHER) compared to a condition where the critical suffix was substituted by another one (sheetal\u2013TEACHER) or by an unrelated non\u2013morphological ending (sheetub\u2013 TEACHER). We also show that this effect is genuinely morphological, as no priming emerged in non\u2013complex items with the same orthographic characteristics (sportel\u2013BROTHEL vs. sportic\u2013BROTHEL vs. sportur\u2013BROTHEL). In a further experiment, we took advantage of these results to assess whether suffixes are recognized in a position\u2013specific fashion. Masked suffix priming did not emerge when the relative order of stems and suffixes was reversed in the prime nonwords\u2014ersheet did not yield any time saving in the identification of teacher as compared to either alsheet or obsheet. We take these results to show that \u2013er was not identified as a morpheme in ersheet, thus indicating that suffix identification is position specific. This conclusion is in line with data on interference effects in nonword rejection (Crepaldi, Rastle, & Davis, 2010), and strongly constrains theoretical proposals on how complex words are identified. In particular, because these findings were reported in a masked priming paradigm, they suggest that positional constraints operate early, most likely at a pre\u2013lexical level of morpho\u2013orthographic analysi
    corecore