81 research outputs found

    The Mesozoic along-strike tectono-metamorphic segmentation of Longmen Shan (eastern Tibetan plateau)

    Get PDF
    The Longmen Shan belt (eastern border of the Tibetan plateau) constitutes a tectonically active region as demonstrated by the occurrence of the unexpected 2008 Mw 7.9 Wenchuan and 2013 Mw 6.6 Lushan earthquakes in the central and southern parts of the belt respectively. These events revealed the necessity of a better understanding of the long‐term geological evolution of the belt and its effect on the present dynamics and crustal structure. New structural and thermobarometric data offer a comprehensive dataset of the paleo‐temperatures across the belt and P‐T estimates for low‐grade metamorphic domains. In the central Longmen Shan, two metamorphic jumps of 150‐200°C, 5‐6 kbar and ~50 °C, 3‐5 kbar acquired during the Early Mesozoic are observed across the Wenchuan and Beichuan faults respectively, attesting to their thrusting movement and unrevealing a major decollement between the allochtonous Songpan‐Garze metasedimentary cover (at T > 500°C) and the autochtonous units and the basement (T < 400°C). In the southern Longmen Shan, the only greenschist‐facies metamorphism is observed both in the basement (360 ± 30°C, 6 ± 2 kbar) and in the metasedimentary cover (350 ± 30°C, 3 ± 1 kbar). Peak conditions were reached at c. 80‐60 Ma in the basement and c. 55‐33 Ma in the cover, c. 50 Ma after the greenschist‐facies metamorphic overprint observed in the central Longmen Shan (c. 150‐120 Ma). This along‐strike metamorphic segmentation coincides well with the present fault segmentation and reveals that the central and southern Longmen Shan experienced different tectono‐metamorphic histories since the Mesozoic

    Quantification of CO2 generation in sedimentary basins through carbonate/clays reactions with uncertain thermodynamic parameters

    Get PDF
    We develop a methodological framework and mathematical formulation which yields estimates of the uncertainty associated with the amounts of CO2generated by Carbonate-Clays Reactions (CCR) in large-scale subsurface systems to assist characterization of the main features of this geochemical process. Our approach couples a one-dimensional compaction model, providing the dynamics of the evolution of porosity, temperature and pressure along the vertical direction, with a chemical model able to quantify the partial pressure of CO2resulting from minerals and pore water interaction. The modeling framework we propose allows (i) estimating the depth at which the source of gases is located and (ii) quantifying the amount of CO2generated, based on the mineralogy of the sediments involved in the basin formation process. A distinctive objective of the study is the quantification of the way the uncertainty affecting chemical equilibrium constants propagates to model outputs, i.e., the flux of CO2. These parameters are considered as key sources of uncertainty in our modeling approach because temperature and pressure distributions associated with deep burial depths typically fall outside the range of validity of commonly employed geochemical databases and typically used geochemical software. We also analyze the impact of the relative abundancy of primary phases in the sediments on the activation of CCR processes. As a test bed, we consider a computational study where pressure and temperature conditions are representative of those observed in real sedimentary formation. Our results are conducive to the probabilistic assessment of (i) the characteristic pressure and temperature at which CCR leads to generation of CO2in sedimentary systems, (ii) the order of magnitude of the CO2generation rate that can be associated with CCR processes

    HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1

    Get PDF
    Recent studies have revealed that a mild increase in environmental temperature stimulates the growth of Arabidopsis seedlings by promoting biosynthesis of the plant hormone auxin. However, little is known about the role of other factors in this process. In this report we show that increased temperature promotes rapid accumulation of the TIR1 auxin co-receptor, an effect that is dependent on the molecular chaperone HSP90. In addition, we show that HSP90 and the co-chaperone SGT1 each interact with TIR1, confirming that TIR1 is an HSP90 client. Inhibition of HSP90 activity results in degradation of TIR1 and interestingly, defects in a range of auxin-mediated growth processes at lower as well as higher temperatures. Our results indicate that HSP90 and SGT1 integrate temperature and auxin signaling in order to regulate plant growth in a changing environment

    Near-future CO2 levels impair the olfactory system of a marine fish

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordData availability: All raw sequence data are accessible at the NCBI Sequence Read Archive through accession number SRP097118. Water chemistry, behaviour and electrophysiology data are available through Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.884674).Survival of marine fishes that are exposed to elevated near-future CO2levels is threatened by their altered responses to sensory cues. Here we demonstrate a physiological and molecular mechanism in the olfactory system that helps to explain altered behaviour under elevated CO2. We combine electrophysiology measurements and transcriptomics with behavioural experiments to investigate how elevated CO2affects the olfactory system of European sea bass (Dicentrarchus labrax). When exposed to elevated CO2(approximately 1,000 µatm), fish must be up to 42% closer to an odour source for detection, compared with current CO2levels (around 400 µatm), decreasing their chances of detecting food or predators. Compromised olfaction correlated with the suppression of the transcription of genes involved in synaptic strength, cell excitability and wiring of the olfactory system in response to sustained exposure to elevated CO2levels. Our findings complement the previously proposed impairment of γ-aminobutyric acid receptors, and indicate that both the olfactory system and central brain function are compromised by elevated CO2levels.This study was supported by grants from Association of European Marine Biology Laboratories (227799), the Natural Environment Research Council (R.W.W.; NE/H017402/1), the Biotechnology and Biological Sciences Research Council (R.W.W.; BB/D005108/1), Fundação para a Ciência e Tecnologia (Portuguese Science Ministry) (UID/Multi/04326/2013) and a Royal Society Newton International Fellowship to C.S.P. C.S.P. is also a beneficiary of a Starting Grant from AXA

    Kolmogorov Complexity and Cellular Automata Classification

    No full text
    We present a new approach to cellular automata (CA for short) classification based on algorithmic complexity. We construct a parameter which is based only on the transition table of CA and measures the &quot;randomness&quot; of evolutions; is better, in a certain sense, than any other parameter defined on rule tables. We investigate the relations between the classical approach based on topology and ours based on algorithmic randomness. We also compare our parameter with Langton&apos;s one: we prove that ours is theoretically better and also agrees with some practical evidences reported in literature. Finally we propose a protocol to approximate and to make experiments on CA dynamical behavior
    corecore