782 research outputs found
Deep near-IR observations of the Globular Cluster M4: Hunting for Brown Dwarfs
We present an analysis of deep HST/WFC3 near-IR (NIR) imaging data of the
globular cluster M4. The best-photometry NIR colour-magnitude diagram (CMD)
clearly shows the main sequence extending towards the expected end of the
Hydrogen-burning limit and going beyond this point towards fainter sources. The
white dwarf sequence can be identified. As such, this is the deepest NIR CMD of
a globular cluster to date. Archival HST optical data were used for
proper-motion cleaning of the CMD and for distinguishing the white dwarfs (WDs)
from brown dwarf (BD) candidates. Detection limits in the NIR are around F110W
approx 26.5 mag and F160W approx27 mag, and in the optical around F775W approx
28 mag. Comparing our observed CMDs with theoretical models, we conclude that
we have reached beyond the H-burning limit in our NIR CMD and are probably just
above or around this limit in our optical-NIR CMDs. Thus, any faint NIR sources
that have no optical counterpart are potential BD candidates, since the optical
data are not deep enough to detect them. We visually inspected the positions of
NIR sources which are fainter than the H-burning limit in F110W and for which
the optical photometry did not return a counterpart. We found in total five
sources for which we did not get an optical measurement. For four of these five
sources, a faint optical counterpart could be visually identified, and an upper
optical magnitude was estimated. Based on these upper optical magnitude limits,
we conclude that one source is likely a WD, one source could either be a WD or
BD candidate, and the remaining two sources agree with being BD candidates. For
only one source no optical counterpart could be detected, which makes this
source a good BD candidate. We conclude that we found in total four good BD
candidates.Comment: ApJ accepted, 28 pages including 16 figure
The impact of pollution on stellar evolution models
An approach is introduced for incorporating the concept of stellar pollution
into stellar evolution models. The approach involves enhancing the metal
content of the surface layers of stellar models. In addition, the surface
layers of stars in the mass range of 0.5-2.0 Solar masses are mixed to an
artificial depth motivated by observations of lithium abundance. The behavior
of polluted stellar evolution models is explored assuming the pollution occurs
after the star has left the fully convective pre main sequence phase. Stellar
models polluted with a few Earth masses of iron are significantly hotter than
stars of the same mass with an equivalent bulk metallicity. Polluted stellar
evolution models can successfully reproduce the metal-rich, parent star tau
Bootis and suggest a slightly lower mass than standard evolution models.
Finally, the possibility that stars in the Hyades open cluster have accreted an
average of 0.5 Earth masses of iron is explored. The results indicate that it
is not possible to rule out stellar pollution on this scale from the scatter of
Hyades stars on a color-magnitude diagram. The small amount of scatter in the
observational data set does rule out pollution on the order of 1.5 Earth masses
of iron. Pollution effects at the low level of 0.5 Earth masses of iron do not
produce substantial changes in a star's evolution.Comment: 14 pages, 3 figures, AASTeX, to appear in the 10/10/03 issue of Ap
Optimal integrated abundances for chemical tagging of extragalactic globular clusters
High-resolution integrated light (IL) spectroscopy provides detailed abundances of distant globular clusters whose stars cannot be resolved. Abundance comparisons with other systems (e.g. for chemical tagging) require understanding the systematic offset
NGC 1866: First Spectroscopic Detection of Fast Rotating Stars in a Young LMC Cluster
High-resolution spectroscopic observations were taken of 29 extended main
sequence turn-off (eMSTO) stars in the young (200 Myr) LMC cluster, NGC
1866 using the Michigan/Magellan Fiber System and MSpec spectrograph on the
Magellan-Clay 6.5-m telescope. These spectra reveal the first direct detection
of rapidly rotating stars whose presence has only been inferred from
photometric studies. The eMSTO stars exhibit H-alpha emission (indicative of
Be-star decretion disks), others have shallow broad H-alpha absorption
(consistent with rotation 150 km s), or deep H-alpha core
absorption signaling lower rotation velocities (150 km s ).
The spectra appear consistent with two populations of stars - one rapidly
rotating, and the other, younger and slowly rotating.Comment: 9 pages, 4 figures, Accepted for publication in ApJ Letter
The stellar metallicity distribution of disc galaxies and bulges in cosmological simulations
By means of high-resolution cosmological hydrodynamical simulations of Milky
Way-like disc galaxies, we conduct an analysis of the associated stellar
metallicity distribution functions (MDFs). After undertaking a kinematic
decomposition of each simulation into spheroid and disc sub-components, we
compare the predicted MDFs to those observed in the solar neighbourhood and the
Galactic bulge. The effects of the star formation density threshold are visible
in the star formation histories, which show a modulation in their behaviour
driven by the threshold. The derived MDFs show median metallicities lower by
0.2-0.3 dex than the MDF observed locally in the disc and in the Galactic
bulge. Possible reasons for this apparent discrepancy include the use of low
stellar yields and/or centrally-concentrated star formation. The dispersions
are larger than the one of the observed MDF; this could be due to simulated
discs being kinematically hotter relative to the Milky Way. The fraction of low
metallicity stars is largely overestimated, visible from the more negatively
skewed MDF with respect to the observational sample. For our fiducial Milky Way
analog, we study the metallicity distribution of the stars born "in situ"
relative to those formed via accretion (from disrupted satellites), and
demonstrate that this low-metallicity tail to the MDF is populated primarily by
accreted stars. Enhanced supernova and stellar radiation energy feedback to the
surrounding interstellar media of these pre-disrupted satellites is suggested
as an important regulator of the MDF skewness.Comment: 20 pages, 14 figures, MNRAS, accepte
Modeling the color evolution of luminous red galaxies - improvements with empirical stellar spectra
Predicting the colors of Luminous Red Galaxies (LRGs) in the Sloan Digital
Sky Survey (SDSS) has been a long-standing problem. The g,r,i colors of LRGs
are inconsistent with stellar population models over the redshift range
0.1<z<0.7. The g-r colors in the models are on average redder than the data
while the r-i colors in the models are bluer towards low redshift. Beyond
redshift 0.4, the predicted r-i color becomes instead too red, while the
predicted g-r agrees with the data. We provide a solution to this problem,
through a combination of new astrophysics and a fundamental change to the
stellar population modeling. We find that the use of the empirical library of
Pickles (1998) instead of theoretical spectra modifies the predicted colors
exactly in the way suggested by the data. The reason is a lower flux in the
empirical libraries, with respect to the theoretical ones, in the wavelength
range 5500-6500 AA. The discrepancy increases with decreasing effective
temperature independently of gravity. This result has general implications for
a variety of studies from globular clusters to high-redshift galaxies. The
astrophysical part of our solution regards the composition of the stellar
populations of these massive Luminous Red Galaxies. We find that on top of the
previous effect one needs to consider a model in which ~3% of the stellar mass
is in old metal-poor stars. Other solutions such as substantial blue Horizontal
Branch at high metallicity or young stellar populations can be ruled out by the
data. Our new model provides a better fit to the g-r and r-i colors of LRGs and
gives new insight into the formation histories of these most massive galaxies.
Our model will also improve the k- and evolutionary corrections for LRGs which
are critical for fully exploiting present and future galaxy surveys.Comment: Submitted to ApJ Letters. High resolution version available at
http://www.maraston.eu/Maraston_etal_2008.pd
A Possible Stellar Metallic Enhancement in Post-T Tauri Stars by a Planetesimal Bombardment
The photospheres of stars hosting planets have larger metallicity than stars
lacking planets. In the present work we study the possibility of an earlier
metal enrichment of the photospheres by means of impacting planetesimals during
the first 20-30Myr. Here we explore this contamination process by simulating
the interactions of an inward migrating planet with a disc of planetesimal
interior to its orbit. The results show the percentage of planetesimals that
fall on the star. We identified the dependence of the planet's eccentricity
() and time scale of migration () on the rate of infalling
planetesimals. For very fast migrations (yr and yr) there
is no capture in mean motion resonances, independently of the value of .
Then, due to the planet's migration the planetesimals suffer close approaches
with the planet and more than 80% of them are ejected from the system. For slow
migrations (yr and yr) the percentage of collisions with
the planet decrease with the increase of the planet's eccentricity. For
and most of the planetesimals were captured in the 2:1 resonance and
more than 65% of them collided with the star. Whereas migration of a Jupiter
mass planet to very short pericentric distances requires unrealistic high disc
masses, these requirements are much smaller for smaller migrating planets. Our
simulations for a slowly migrating 0.1 planet, even demanding
a possible primitive disc three times more massive than a primitive solar
nebula, produces maximum [Fe/H] enrichments of the order of 0.18 dex. These
calculations open possibilities to explain hot Jupiters exoplanets
metallicities.Comment: Accepted for publication by Monthly Notices of the Royal Astronomical
Societ
- …