1,512 research outputs found

    Why do Bell experiments?

    Full text link
    Experiments over three decades have been unable to demonstrate weak nonlocality in the sense of Bell unambiguously, without loopholes. The last important loophole remaining is the detection loophole, which is being tackled by at least three experimental groups. This letter counters five common beliefs about Bell experiments, and presents alternative scenarios for future developments.Comment: 10 pages, 1 figure, to be submitted to Natur

    Weight, volume, and center of mass of segments of the human body

    Get PDF
    Weight, volume, and center of mass of segments of human bod

    Quantum particles from coarse grained classical probabilities in phase space

    Full text link
    Quantum particles can be obtained from a classical probability distribution in phase space by a suitable coarse graining, whereby simultaneous classical information about position and momentum can be lost. For a suitable time evolution of the classical probabilities and choice of observables all features of a quantum particle in a potential follow from classical statistics. This includes interference, tunneling and the uncertainty relation.Comment: 19 page

    Is Quantum Mechanics Compatible with a Deterministic Universe? Two Interpretations of Quantum Probabilities

    Get PDF
    Two problems will be considered: the question of hidden parameters and the problem of Kolmogorovity of quantum probabilities. Both of them will be analyzed from the point of view of two distinct understandings of quantum mechanical probabilities. Our analysis will be focused, as a particular example, on the Aspect-type EPR experiment. It will be shown that the quantum mechanical probabilities appearing in this experiment can be consistently understood as conditional probabilities without any paradoxical consequences. Therefore, nothing implies in the Aspect experiment that quantum theory is incompatible with a deterministic universe.Comment: REVISED VERSION! ONLY SMALL CHANGES IN THE TEXT! compressed and uuencoded postscript, a uuencoded version of a demo program file (epr.exe for DOS) is attached as a "Figure

    Zwitters: particles between quantum and classical

    Full text link
    We describe both quantum particles and classical particles in terms of a classical statistical ensemble, characterized by a probability distribution in phase space. By use of a wave function in phase space both can be treated in the same quantum formalism. The different dynamics of quantum and classical particles resides then only from different evolution equations for the probability distribution. Quantum particles are characterized by a specific choice of observables and time evolution of the probability density. All relations for a quantum particle in a potential, including interference and tunneling, can be described in terms of the classical probability distribution. We formulate the concept of zwitters - particles for which the time evolution interpolates between quantum and classical particles. Experiments can test a small parameter which quantifies possible deviations from quantum mechanics.Comment: extended discussion of possible realizations of zwitters, including macroscopic droplets or BEC condensate

    MGP versus Kochen-Specker condition in hidden variables theories

    Full text link
    Hidden variables theories for quantum mechanics are usually assumed to satisfy the KS condition. The Bell-Kochen-Specker theorem then shows that these theories are necessarily contextual. But the KS condition can be criticized from an operational viewpoint, which suggests that a weaker condition (MGP) should be adopted in place of it. This leads one to introduce a class of hidden parameters theories in which contextuality can, in principle, be avoided, since the proofs of the Bell-Kochen-Specker theorem break down. A simple model recently provided by the author for an objective interpretation of quantum mechanics can be looked at as a noncontextual hidden parameters theory, which shows that such theories actually exist.Comment: 10 pages, new updated footnotes and quotation

    Hidden-variable theorems for real experiments

    Get PDF
    It has recently been questioned whether the Kochen-Specker theorem is relevant to real experiments, which by necessity only have finite precision. We give an affirmative answer to this question by showing how to derive hidden-variable theorems that apply to real experiments, so that non-contextual hidden variables can indeed be experimentally disproved. The essential point is that for the derivation of hidden-variable theorems one does not have to know which observables are really measured by the apparatus. Predictions can be derived for observables that are defined in an entirely operational way.Comment: 4 page

    Two qubits of a W state violate Bell's inequality beyond Cirel'son's bound

    Full text link
    It is shown that the correlations between two qubits selected from a trio prepared in a W state violate the Clauser-Horne-Shimony-Holt inequality more than the correlations between two qubits in any quantum state. Such a violation beyond Cirel'son's bound is smaller than the one achieved by two qubits selected from a trio in a Greenberger-Horne-Zeilinger state [A. Cabello, Phys. Rev. Lett. 88, 060403 (2002)]. However, it has the advantage that all local observers can know from their own measurements whether their qubits belongs or not to the selected pair.Comment: REVTeX4, 5 page

    Quantum Holography

    Get PDF
    We propose to make use of quantum entanglement for extracting holographic information about a remote 3-D object in a confined space which light enters, but from which it cannot escape. Light scattered from the object is detected in this confined space entirely without the benefit of spatial resolution. Quantum holography offers this possibility by virtue of the fourth-order quantum coherence inherent in entangled beams.Comment: 7 pages, submitted to Optics Expres

    Solving the Einstein-Podolsky-Rosen puzzle: the origin of non-locality in Aspect-type experiments

    Full text link
    So far no mechanism is known, which could connect the two measurements in an Aspect-type experiment. Here, we suggest such a mechanism, based on the phase of a photon's field during propagation. We show that two polarization measurements are correlated, even if no signal passes from one point of measurement to the other. The non-local connection of a photon pair is the result of its origin at a common source, where the two fields acquire a well defined phase difference. Therefore, it is not actually a non-local effect in any conventional sense. We expect that the model and the detailed analysis it allows will have a major impact on quantum cryptography and quantum computation.Comment: 5 pages 1 figure. Added an analysis of quantum steering. The result is that under certain conditions the experimental result at B can be predicted if the polarization angle and the result at A are known. The paper has been accepted for publication in Frontiers of Physics. arXiv admin note: substantial text overlap with arXiv:1108.435
    corecore