32 research outputs found

    2-Octyl-cyanoacrylate for wound closure in cervical and lumbar spinal surgery

    Get PDF
    It is claimed that wound closure with 2-octyl-cyanoacrylate has the advantages that band-aids are not needed in the postoperative period, that the wound can get in contact with water and that removal of stitches is not required. This would substantially enhance patient comfort, especially in times of reduced in-hospital stays. Postoperative wound infection is a well-known complication in spinal surgery. The reported infection rates range between 0% and 12.7%. The question arises if the advantages of wound closure with 2-octyl-cyanoacrylate in spinal surgery are not surpassed by an increase in infection rate. This study has been conducted to identify the infection rate of spinal surgery if wound closure was done with 2-octyl-cyanoacrylate. A total of 235 patients with one- or two-level surgery at the cervical or lumbar spine were included in this prospective study. Their pre- and postoperative course was evaluated. Analysis included age, sex, body mass index, duration and level of operation, blood examinations, 6-week follow-up and analysis of preoperative risk factors. The data were compared to infection rates of similar surgeries found in a literature research and to a historical group of 503 patients who underwent wound closure with standard skin sutures after spine surgery. With the use of 2-octyl-cyanoacrylate, only one patient suffered from postoperative wound infection which accounts for a total infection rate of 0.43%. In the literature addressing infection rate after spine surgery, an average rate of 3.2% is reported. Infection rate was 2.2% in the historical control group. No risk factor could be identified which limited the usage of 2-octyl-cyanoacrylate. 2-Octyl-cyanoacrylate provides sufficient wound closure in spinal surgery and is associated with a low risk of postoperative wound infection

    A single molecule assay to probe monovalent and multivalent bonds between hyaluronan and its key leukocyte receptor CD44 under force

    Get PDF
    Glycosaminoglycans (GAGs), a category of linear, anionic polysaccharides, are ubiquitous in the extracellular space, and important extrinsic regulators of cell function. Despite the recognized significance of mechanical stimuli in cellular communication, however, only few single molecule methods are currently available to study how monovalent and multivalent GAG•protein bonds respond to directed mechanical forces. Here, we have devised such a method, by combining purpose-designed surfaces that afford immobilization of GAGs and receptors at controlled nanoscale organizations with single molecule force spectroscopy (SMFS). We apply the method to study the interaction of the GAG polymer hyaluronan (HA) with CD44, its receptor in vascular endothelium. Individual bonds between HA and CD44 are remarkably resistant to rupture under force in comparison to their low binding affinity. Multiple bonds along a single HA chain rupture sequentially and independently under load. We also demonstrate how strong non-covalent bonds, which are versatile for controlled protein and GAG immobilization, can be effectively used as molecular anchors in SMFS. We thus establish a versatile method for analyzing the nanomechanics of GAG•protein interactions at the level of single GAG chains, which provides new molecular-level insight into the role of mechanical forces in the assembly and function of GAG-rich extracellular matrices

    Microfluidics: reframing biological enquiry

    Full text link
    The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions. We describe how our understanding of molecular and cell biology is being and will continue to be advanced by precision microfluidic approaches and posit that microfluidic tools - in conjunction with advanced imaging, bioinformatics and molecular biology approaches - will transform biology into a precision science

    Enzymatische Endwertmethode zur Xylit-Bestimmung

    Get PDF
    Peer Reviewe

    Quantification of the adhesion strength of fibroblast cells on ethylene glycol terminated self-assembled monolayers by a microfluidic shear force assay

    No full text
    The adhesion strength of cells depends on the properties of the surface they attach to. Varying the surface properties can trigger different cellular responses such as differentiation. In order to study cell adhesion quantitatively, we developed a microfluidic shear force assay which allows the variation of applied shear stress by five orders of magnitude. With this device we can determine the critical shear stress which is necessary to remove 50% of the adherent cells. As an application we investigated the adhesion strength of cells on a series of oligo(ethylene glycol) (OEG) containing self-assembled monolayers (SAMs). By varying the number of ethylene oxide units, the hydration properties of the monolayers are changed. We found that cell adhesion strength for mammalian fibroblasts decreases if the hydration of the surface is increased. As the cell spreading area changes with the substrate properties, the adhesion strength per unit area was additionally determined
    corecore