72 research outputs found

    Stringing and dynamics effects on forearm muscular activity during harp playing

    Get PDF
    The practice of a musical instrument requires fine dexterity, repetitive, fast, and precise move­ments, as well as important efforts to set the instrument into vibration, while adopting postures often unnatural for the human body. As a result, musicians are often subject to pain and muscu­loskeletal disorders. In the case of plucked string instruments and especially the concert harp, the plucking force is directly related to the strings’ tension. Consequently, the choice of the strings has to be made based on both, the musician feel while playing, and the musculoskeletal consequences. This paper investigates how the string properties and the playing dynamics affect the finger and wrist muscle activity during harp playing. This study first emphasized the note­ worthy recruitment of the flexor and extensor muscles (42% and 29% of MVC, respectively). Findings outlined further that the fingering choice, the adopted playing dynamics and the string’s material govern the muscular activity level and the playing control. Such results are a first step to better understand how the harp ergonomics may affect the player’s integrity and help them decide the most suitable stringing for their practice

    Development of a two-dimensional dynamic model of the foot-ankle system exposed to vibration

    Get PDF
    Workers in mining, mills, construction and some types of manufacturing are exposed to vibration that enters the body through the feet. Exposure to foot-transmitted vibration (FTV) is associated with an increased risk of developing vibration-induced white foot (VIWFt). VIWFt is a vascular and neurological condition of the lower limb, leading to blanching in the toes and numbness and tingling in the feet, which can be disabling for the worker. This paper presents a two-dimensional dynamic model describing the response of the foot-ankle system to vibration using four segments and eight Kelvin-Voigt models. The parameters of the model have been obtained by minimizing the quadratic reconstruction error between the experimental and numerical curves of the transmissibility and the apparent mass of participants standing in a neutral position. The average transmissibility at five locations on the foot has been optimized by minimizing the difference between experimental data and the model prediction between 10 and 100 Hz. The same procedure has been repeated to fit the apparent mass measured at the driving point in a frequency range between 2 and 20 Hz. Monte Carlo simulations were used to assess how the variability of the mass, stiffness and damping matrices affect the overall data dispersion. Results showed that the 7 degree-of-freedom model correctly described the transmissibility: the average transmissibility modulus error was 0.1. The error increased when fitting the transmissibility and apparent mass curves: the average modulus error was 0.3. However, the obtained values were reasonable with respect to the average inter-participant variability experimentally estimated at 0.52 for the modulus. Study results can contribute to the development of materials and equipment to attenuate FTV and, consequently, lower the risk of developing VIWFt.INAI

    Correlations and forecast of death tolls in the Syrian conflict

    Get PDF
    The Syrian armed conflict has been ongoing since 2011 and has already caused thousands of deaths. The analysis of death tolls helps to understand the dynamics of the conflict and to better allocate resources and aid to the affected areas. In this article, we use information on the daily number of deaths to study temporal and spatial correlations in the data, and exploit this information to forecast events of deaths. We found that the number of violent deaths per day in Syria varies more widely than that in England in which non-violent deaths dominate. We have identified strong positive auto-correlations in Syrian cities and non-trivial cross-correlations across some of them. The results indicate synchronization in the number of deaths at different times and locations, suggesting respectively that local attacks are followed by more attacks at subsequent days and that coordinated attacks may also take place across different locations. Thus the analysis of high temporal resolution data across multiple cities makes it possible to infer attack strategies, warn potential occurrence of future events, and hopefully avoid further deaths

    How Wealth Accumulation Can Promote Cooperation

    Get PDF
    Explaining the emergence and stability of cooperation has been a central challenge in biology, economics and sociology. Unfortunately, the mechanisms known to promote it either require elaborate strategies or hold only under restrictive conditions. Here, we report the emergence, survival, and frequent domination of cooperation in a world characterized by selfishness and a strong temptation to defect, when individuals can accumulate wealth. In particular, we study games with local adaptation such as the prisoner's dilemma, to which we add heterogeneity in payoffs. In our model, agents accumulate wealth and invest some of it in their interactions. The larger the investment, the more can potentially be gained or lost, so that present gains affect future payoffs. We find that cooperation survives for a far wider range of parameters than without wealth accumulation and, even more strikingly, that it often dominates defection. This is in stark contrast to the traditional evolutionary prisoner's dilemma in particular, in which cooperation rarely survives and almost never thrives. With the inequality we introduce, on the contrary, cooperators do better than defectors, even without any strategic behavior or exogenously imposed strategies. These results have important consequences for our understanding of the type of social and economic arrangements that are optimal and efficient

    Timbre from Sound Synthesis and High-level Control Perspectives

    Get PDF
    International audienceExploring the many surprising facets of timbre through sound manipulations has been a common practice among composers and instrument makers of all times. The digital era radically changed the approach to sounds thanks to the unlimited possibilities offered by computers that made it possible to investigate sounds without physical constraints. In this chapter we describe investigations on timbre based on the analysis by synthesis approach that consists in using digital synthesis algorithms to reproduce sounds and further modify the parameters of the algorithms to investigate their perceptual relevance. In the first part of the chapter timbre is investigated in a musical context. An examination of the sound quality of different wood species for xylophone making is first presented. Then the influence of instrumental control on timbre is described in the case of clarinet and cello performances. In the second part of the chapter, we mainly focus on the identification of sound morphologies, so called invariant sound structures responsible for the evocations induced by environmental sounds by relating basic signal descriptors and timbre descriptors to evocations in the case of car door noises, motor noises, solid objects, and their interactions

    Saving Human Lives: What Complexity Science and Information Systems can Contribute

    Get PDF
    We discuss models and data of crowd disasters, crime, terrorism, war and disease spreading to show that conventional recipes, such as deterrence strategies, are often not effective and sufficient to contain them. Many common approaches do not provide a good picture of the actual system behavior, because they neglect feedback loops, instabilities and cascade effects. The complex and often counter-intuitive behavior of social systems and their macro-level collective dynamics can be better understood by means of complexity science. We highlight that a suitable system design and management can help to stop undesirable cascade effects and to enable favorable kinds of self-organization in the system. In such a way, complexity science can help to save human lives.Comment: 67 pages, 25 figures; accepted for publication in Journal of Statistical Physics [for related work see http://www.futurict.eu/
    corecore