375 research outputs found

    Antiproton modulation in the Heliosphere and AMS-02 antiproton over proton ratio prediction

    Full text link
    We implemented a quasi time-dependent 2D stochastic model of solar modulation describing the transport of cosmic rays (CR) in the heliosphere. Our code can modulate the Local Interstellar Spectrum (LIS) of a generic charged particle (light cosmic ions and electrons), calculating the spectrum at 1AU. Several measurements of CR antiparticles have been performed. Here we focused our attention on the CR antiproton component and the antiproton over proton ratio. We show that our model, using the same heliospheric parameters for both particles, fit the observed anti-p/p ratio. We show a good agreement with BESS-97 and PAMELA data and make a prediction for the AMS-02 experiment

    Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary-Magnetic-Field Polar Correction

    Get PDF
    The cosmic rays differential intensity inside the heliosphere, for energy below 30 GeV/nuc, depends on solar activity and interplanetary magnetic field polarity. This variation, termed solar modulation, is described using a 2-D (radius and colatitude) Monte Carlo approach for solving the Parker transport equation that includes diffusion, convection, magnetic drift and adiabatic energy loss. Since the whole transport is strongly related to the interplanetary magnetic field (IMF) structure, a better understanding of his description is needed in order to reproduce the cosmic rays intensity at the Earth, as well as outside the ecliptic plane. In this work an interplanetary magnetic field model including the standard description on ecliptic region and a polar correction is presented. This treatment of the IMF, implemented in the HelMod Monte Carlo code (version 2.0), was used to determine the effects on the differential intensity of Proton at 1\,AU and allowed one to investigate how latitudinal gradients of proton intensities, observed in the inner heliosphere with the Ulysses spacecraft during 1995, can be affected by the modification of the IMF in the polar regions.Comment: accepted for publication inAdvances in Astronom

    Proton Modulation in the Heliosphere for Different Solar Conditions and Prediction for AMS-02

    Full text link
    Spectra of Galactic Cosmic Rays (GCRs) measured at the Earth are the combination of several processes: sources production and acceleration, propagation in the interstellar medium and propagation in the heliosphere. Inside the solar cavity the flux of GCRs is reduced due to the solar modulation, the interaction which they have with the interplanetary medium. We realized a 2D stochastic simulation of solar modulation to reproduce CR spectra at the Earth, and evaluated the importance in our results of the Local Interstellar Spectrum (LIS) model and its agreement with data at high energy. We show a good agreement between our model and the data taken by AMS-01 and BESS experiments during periods with different solar activity conditions. Furthermore we made a prediction for the flux which will be measured by AMS-02 experiment.Comment: Accepted for publication in the Proceedings of the ICATPP Conference on Cosmic Rays for Particle and Astroparticle Physics, Villa Olmo (Como, Italy), 7-8 October, 2010, to be published by World Scientific (Singapore

    Suprathermal particle addition to solar wind pressure: possible influence on magnetospheric transmissivity of low energy cosmic rays?

    Full text link
    Energetic (suprathermal) solar particles, accelerated in the interplanetary medium, contribute to the solar wind pressure, in particular during high solar activity periods. We estimated the effect of the increase of solar wind pressure due to suprathermal particles on magnetospheric transmissivity of galactic cosmic rays in the case of one recent solar event

    An evaluation of the exposure in nadir observation of the JEM-EUSO mission

    Get PDF
    We evaluate the exposure during nadir observations with JEM-EUSO, the Extreme Universe Space Observatory,on-board the Japanese Experiment Module of the International Space Station. Designed as a mission to explore the extreme energy Universe from space, JEM-EUSO will monitor the Earth's nighttime atmosphere to record the ultraviolet light from tracks generated by extensive air showers initiated by ultra-high energy cosmic rays. In the present work, we discuss the particularities of space-based observation and we compute the annual exposure in nadir observation. The results are based on studies of the expected trigger aperture and observational duty cycle, as well as, on the investigations of the effects of clouds and different types of background light. We show that the annual exposure is about one order of magnitude higher than those of the presently operating ground-based observatories.Fil: Adams, J. H.. University of Alabama in Huntsville; Estados UnidosFil: Ahmad, S.. Universite Paris Sud; FranciaFil: Albert, J. N..Fil: Allard, D.. Universite Paris Diderot - Paris 7; FranciaFil: Ambrosio, M.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Anchordoqui, L.. Medical College Of Wisconsin; Estados UnidosFil: Anzalone, A.. INAF; ItaliaFil: Arai, Y.. High Energy Accelerator Research Organization (KEK); JapónFil: Aramo, C..Fil: Asano, K.. Interactive Research Center of Science, Tokyo Institute of Technology; JapónFil: Ave, M.. Universidad de Santiago de Compostela; EspañaFil: Barrillon, P.. Universite de Paris; FranciaFil: Batsch, T.. National Centre for Nuclear Research; PoloniaFil: Bayer, J.. University of Tubingen; AlemaniaFil: Belenguer, T.. j Instituto Nacional de Técnica Aeroespacial (INTA); EspañaFil: Bellotti, R.. Universita’ degli Studi di Bari Aldo Moro and INFN; ItaliaFil: Berlind, A. A.. Vanderbilt University; Estados UnidosFil: Bertaina, M.. Universita di Torino; ItaliaFil: Biermann, P. L.. Karlsruhe Institute of Technology (KIT); AlemaniaFil: Biktemerova,. Joint Institute for Nuclear Research; RusiaFil: Blaksley, C.. Universite de la Sorbona Nouvelle; FranciaFil: Blecki, J.. Space Research Centre of the Polish Academy of Sciences (CBK); PoloniaFil: Blin-Bondil, S.. Universite de Paris; FranciaFil: Blumer, J.. Karlsruhe Institute of Technology (KIT),; AlemaniaFil: Bobik, P.. Institute of Experimental Physics; EslovaquiaFil: Bogomilov, M.. St. Kliment Ohridski University of Sofia; BulgariaFil: Bonamente, M.. University of Alabama in Huntsville; Estados UnidosFil: Briz, S.. Universidad Carlos III de Madrid,; EspañaFil: Supanitsky, Alberto Daniel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    Effect of bio-engineering on size, shape, composition and rigidity of bacterial microcompartments

    Get PDF
    Bacterial microcompartments (BMCs) are proteinaceous organelles that are found in a broad range of bacteria and are composed of an outer shell that encases an enzyme cargo representing a specific metabolic process. The outer shell is made from a number of different proteins that form hexameric and pentameric tiles, which interact to allow the formation of a polyhedral edifice. We have previously shown that the Citrobacter freundii BMC associated with 1,2-propanediol utilization can be transferred into Escherichia coli to generate a recombinant BMC and that empty BMCs can be formed from just the shell proteins alone. Herein, a detailed structural and proteomic characterization of the wild type BMC is compared to the recombinant BMC and a number of empty BMC variants by 2D-gel electrophoresis, mass spectrometry, transmission electron microscopy (TEM) and atomic force microscopy (AFM). Specifically, it is shown that the wild type BMC and the recombinant BMC are similar in terms of composition, size, shape and mechanical properties, whereas the empty BMC variants are shown to be smaller, hollow and less malleable

    Science of atmospheric phenomena with JEM-EUSO

    Get PDF
    The main goal of the JEM-EUSO experiment is the study of Ultra HighEnergy Cosmic Rays (UHECR, 10^19 - 10^21 eV ), but the method which will be used (detection of the secondary light emissions induced by cosmic rays in the atmosphere) allows to study other luminous phenomena. The UHECRs will be detected through the measurement of the emission in the range between 290 and 430 m, where some part of Transient Luminous Events (TLEs) emission also appears. This work discusses the possibility of using the JEM-EUSO Telescope to get new scientific results on TLEs. The high time resolution of this instrument allows to observe the evolution of TLEs with great precision just at the moment of their origin. Thepaper consists of four parts: review of the present knowledge on the TLE, presentation of the results of the simulations of the TLE images in the JEM-EUSO telescope, results of the Russian experiment Tatiana-2 and discussion of the possible progress achievable in this field with JEM-EUSO as well as possible cooperation with other space projects devoted to the study of TLE-TARANIS and ASIM. In atmospheric physics, the study of TLEs became one of the main physical subjects of interest after their discovery in 1989. In the years 1992 - 1994 detection was performed fromsatellite, aircraft and space shuttle and recently from the International Space Station. These events have short duration (milliseconds) and small scales (km to tens of km) and appear at altitudes 50 - 100 km. Their nature is still not clear and each new experimental data can be useful for a better understanding of these mysterious phenomena.Fil: Adams, J. H.. University of Alabama in Huntsville; Estados UnidosFil: Ahmad, S.. Ecole Polytechnique; FranciaFil: Albert, J. N.. Univ Paris-Sud; FranciaFil: Allard, D.. Univ Paris Diderot; FranciaFil: Anchordoqui, L.. University of Wisconsin-Milwaukee; Estados UnidosFil: Andreev, V.. University of California; Estados UnidosFil: Anzalone, A.. INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo; ItaliaFil: Arai, Y.. High Energy Accelerator Research Organization (KEK); JapónFil: Asano, K.. Tokyo Institute of Technology; JapónFil: Ave Pernas, M.. Universidad de Alcala (UAH); EspañaFil: Barrillon, P.. Univ Paris-Sud; FranciaFil: Batsch, T.. Skobeltsyn Institute of Nuclear Physics; RusiaFil: Bayer, J.. University of Tubingen; AlemaniaFil: Bechini, R.. Universita’ di Torino; ItaliaFil: Belenguer, T.. Instituto Nacional de Tecnica Aeroespacial (INTA); EspañaFil: Bellotti, R.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Belov, K.. University of California; Estados UnidosFil: Berlind, A. A.. Vanderbilt University; Estados UnidosFil: Bertaina, M.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Biermann, P. L.. Karlsruhe Institute of Technology (KIT); AlemaniaFil: Biktemerova, S.. Joint Institute for Nuclear Research; RusiaFil: Blaksley, C.. Univ Paris Diderot; FranciaFil: Blanc, N.. Swiss Center for Electronics and Microtechnology (CSEM); SuizaFil: Blecki, J.. Space Research Centre of the Polish Academy of Sciences (CBK; PoloniaFil: Blin-Bondil, S.. Ecole Polytechnique; FranciaFil: Blumer, J.. Karlsruhe Institute of Technology (KIT),; AlemaniaFil: Bobik, P.. Institute of Experimental Physics; EslovaquiaFil: Bogomilov, M.. University of Sofia; BulgariaFil: Bonamente, M.. University of Alabama in Huntsville; Estados UnidosFil: Supanitsky, Alberto Daniel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: The JEM-EUSO Collaboration

    Energy loss for electrons in the Heliosphere and local interstellar spectrum for solar modulation

    Get PDF
    Galactic Cosmic Rays (GCR) entering the Heliosphere are affected by the solar modulation, which is a combination of diffusion, convection, magnetic drift, and adiabatic energy losses usually seen as a decrease of the flux at low energies (less than 10 GeV). We improved a quasi time-dependent 2D Stochastic Simulation code describing such effects. We focused our attention on the electron modulation, adding energy losses mechanisms in the Heliosphere that can be neglected for protons and ions: inverse Compton, ionization, synchrotron, and bremsstrahlung. These effects have been evaluated in the region affected by the solar magnetic field, up to 100 AU, where the environment conditions are not constant, especially the magnetic field intensity, and the photon density. In our calculation the inverse compton energy losses are dominant, but they contribute only a few percent in comparison with the adiabatic losses. We also compared the Local Interstellar Spectrum (LIS) of primary electrons with experimental data collected in the past years at energies 20 GeV. We found that, inside one standard deviation, LIS fits the data and can be used in a Monte carlo code reproducing CR propagation in the Heliosphere

    The Pentameric Vertex Proteins Are Necessary for the Icosahedral Carboxysome Shell to Function as a CO2 Leakage Barrier

    Get PDF
    BACKGROUND: Carboxysomes are polyhedral protein microcompartments found in many autotrophic bacteria; they encapsulate the CO(2) fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) within a thin protein shell and provide an environment that enhances the catalytic capabilities of the enzyme. Two types of shell protein constituents are common to carboxysomes and related microcompartments of heterotrophic bacteria, and the genes for these proteins are found in a large variety of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We have created a Halothiobacillus neapolitanus knockout mutant that does not produce the two paralogous CsoS4 proteins thought to occupy the vertices of the icosahedral carboxysomes and related microcompartments. Biochemical and ultrastructural analyses indicated that the mutant predominantly forms carboxysomes of normal appearance, in addition to some elongated microcompartments. Despite their normal shape, purified mutant carboxysomes are functionally impaired, although the activities of the encapsulated enzymes are not negatively affected. CONCLUSIONS/SIGNIFICANCE: In the absence of the CsoS4 proteins the carboxysome shell loses its limited permeability to CO(2) and is no longer able to provide the catalytic advantage RubisCO derives from microcompartmentalization. This study presents direct evidence that the diffusion barrier property of the carboxysome shell contributes significantly to the biological function of the carboxysome
    corecore