112 research outputs found

    Unlocking Structure-Self-Assembly Relationships in Cationic Azobenzene Photosurfactants.

    Get PDF
    Azobenzene photosurfactants are light-responsive amphiphiles that have garnered significant attention for diverse applications including delivery and sorting systems, phase transfer catalysis, and foam drainage. The azobenzene chromophore changes both its polarity and conformation (trans-cis isomerization) in response to UV light, while the amphiphilic structure drives self-assembly. Detailed understanding of the inherent relationship between the molecular structure, physicochemical behavior, and micellar arrangement of azobenzene photosurfactants is critical to their usefulness. Here, we investigate the key structure-function-assembly relationships in the popular cationic alkylazobenzene trimethylammonium bromide (AzoTAB) family of photosurfactants. We show that subtle changes in the surfactant structure (alkyl tail, spacer length) can lead to large variations in the critical micelle concentration, particularly in response to light, as determined by surface tensiometry and dynamic light scattering. Small-angle neutron scattering studies also reveal the formation of more diverse micellar aggregate structures (ellipsoids, cylinders, spheres) than predicted based on simple packing parameters. The results suggest that whereas the azobenzene core resides in the effective hydrophobic segment in the trans-isomer, it forms part of the effective hydrophilic segment in the cis-isomer because of the dramatic conformational and polarity changes induced by photoisomerization. The extent of this shift in the hydrophobic-hydrophilic balance is determined by the separation between the azobenzene core and the polar head group in the molecular structure. Our findings show that judicious design of the AzoTAB structure enables selective tailoring of the surfactant properties in response to light, such that they can be exploited and controlled in a reliable fashion

    Targeted design leads to tunable photoluminescence from perylene dicarboxdiimide-poly(oxyalkylene)/siloxane hybrids for luminescent solar concentrators

    Get PDF
    The chain length and branching of the organic backbone of poly(oxyalkylene)/siloxane ureasils can be used to control the placement and orientation of a covalently-grafted perylene, leading to tunable photoluminescence.</p

    A reduced-order strategy for 4D-Var data assimilation

    Get PDF
    This paper presents a reduced-order approach for four-dimensional variational data assimilation, based on a prior EO F analysis of a model trajectory. This method implies two main advantages: a natural model-based definition of a mul tivariate background error covariance matrix Br\textbf{B}_r, and an important decrease of the computational burden o f the method, due to the drastic reduction of the dimension of the control space. % An illustration of the feasibility and the effectiveness of this method is given in the academic framework of twin experiments for a model of the equatorial Pacific ocean. It is shown that the multivariate aspect of Br\textbf{B}_r brings additional information which substantially improves the identification procedure. Moreover the computational cost can be decreased by one order of magnitude with regard to the full-space 4D-Var method

    Cork suberin as an additive in offset lithographic printing inks

    Get PDF
    Suberin oligomers, isolated from cork (Quercus suber L.), were used as additives in ‘Waterless’ and vegetable-oil ink formulations, in the range of 2–10% w/w. The rheological behaviour of the suberin oligomers as well as of the inks, with and without suberin, were investigated as a function of temperature. It was shown that the addition of suberin induces a decrease of viscosity of both inks. The tack of pristine inks, suberin oligomers and their mixtures were determined at different temperatures: the variation of this parameter as a function of time provided information about the drying kinetics of these formulations. The tack of the ‘Waterless’ ink was found to increase with the introduction of suberin, whereas that of vegetable-oil based counterparts decreased. All the trends observed were interpreted in terms of the differences in composition between the two types of inks. Preliminary printing tests were carried out with the various suberin-containing inks.info:eu-repo/semantics/publishedVersio

    In situ probing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy

    Get PDF
    An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the hydrogen surface coverage is discusse

    Ureasil organic-inorganic hybrids as photoactive waveguides for conjugated polyelectrolyte luminescent solar concentrators

    Get PDF
    We test the potential of resonance energy transfer to enhance the performance of conjugated copolyelectrolyte donor–acceptor luminescent solar concentrators immobilised within a photoactive organic–inorganic ureasil waveguide.</p

    Physics–Dynamics Coupling in weather, climate and Earth system models: Challenges and recent progress

    Get PDF
    This is the final version. Available from American Meteorological Society via the DOI in this record.Numerical weather, climate, or Earth system models involve the coupling of components. At a broad level, these components can be classified as the resolved fluid dynamics, unresolved fluid dynamical aspects (i.e., those represented by physical parameterizations such as subgrid-scale mixing), and nonfluid dynamical aspects such as radiation and microphysical processes. Typically, each component is developed, at least initially, independently. Once development is mature, the components are coupled to deliver a model of the required complexity. The implementation of the coupling can have a significant impact on the model. As the error associated with each component decreases, the errors introduced by the coupling will eventually dominate. Hence, any improvement in one of the components is unlikely to improve the performance of the overall system. The challenges associated with combining the components to create a coherent model are here termed physics–dynamics coupling. The issue goes beyond the coupling between the parameterizations and the resolved fluid dynamics. This paper highlights recent progress and some of the current challenges. It focuses on three objectives: to illustrate the phenomenology of the coupling problem with references to examples in the literature, to show how the problem can be analyzed, and to create awareness of the issue across the disciplines and specializations. The topics addressed are different ways of advancing full models in time, approaches to understanding the role of the coupling and evaluation of approaches, coupling ocean and atmosphere models, thermodynamic compatibility between model components, and emerging issues such as those that arise as model resolutions increase and/or models use variable resolutions.Natural Environment Research Council (NERC)National Science FoundationDepartment of Energy Office of Biological and Environmental ResearchPacific Northwest National Laboratory (PNNL)DOE Office of Scienc
    • 

    corecore