8,780 research outputs found

    The relative concentration of visible and dark matter in clusters of galaxies

    Full text link
    [Abridged] We consider two clusters (A496 and Coma) that are representative of the two classes of cool-core and non-cool-core clusters. We first refer to a two-component dynamical model that ignores the contribution from the galaxy density distribution and study the condition of hydrostatic equilibrium for the hot intracluster medium (ICM) under the assumption of spherical symmetry, in the presence of dark matter. We model the ICM density distribution in terms of a standard β\beta-model with β=2/3\beta=2/3, i.e. with a distribution similar to that of a regular isothermal sphere (RIS), and fit the observed X-ray brightness profiles. With the explicit purpose of ignoring cosmological arguments, we na\"ively assume that dark matter, if present, has an analogous density distribution, with the freedom of two different density and length scales. The relative distribution of visible and dark matter is then derived by fitting the temperature data for the ICM under conditions of hydrostatic equilibrium. For both clusters, we find that dark matter is more concentrated with respect to visible matter. We then test whether the conclusion changes significantly when dark matter is taken to be distributed according to cosmologically favored density profiles and when the contribution of the mass contained in galaxies is taken into account. Although the qualitative conclusions remain unchanged, we find that the contribution of galaxies to the mass budget is more important than generally assumed. We also show that, without resorting to additional information on the small scale, it is not possible to tell whether a density cusp is present or absent in these systems. [Abridged]Comment: 13 pages, 3 figures, accepted for publication in Il Nuovo Cimento

    The Kovacs effect in model glasses

    Full text link
    We discuss the `memory effect' discovered in the 60's by Kovacs in temperature shift experiments on glassy polymers, where the volume (or energy) displays a non monotonous time behaviour. This effect is generic and is observed on a variety of different glassy systems (including granular materials). The aim of this paper is to discuss whether some microscopic information can be extracted from a quantitative analysis of the `Kovacs hump'. We study analytically two families of theoretical models: domain growth and traps, for which detailed predictions of the shape of the hump can be obtained. Qualitatively, the Kovacs effect reflects the heterogeneity of the system: its description requires to deal not only with averages but with a full probability distribution (of domain sizes or of relaxation times). We end by some suggestions for a quantitative analysis of experimental results.Comment: 17 pages, 6 figures; revised versio

    Involutive constrained systems and Hamilton-Jacobi formalism

    Full text link
    In this paper, we study singular systems with complete sets of involutive constraints. The aim is to establish, within the Hamilton-Jacobi theory, the relationship between the Frobenius' theorem, the infinitesimal canonical transformations generated by constraints in involution with the Poisson brackets, and the lagrangian point (gauge) transformations of physical systems

    Hamilton-Jacobi formalism for Linearized Gravity

    Get PDF
    In this work we study the theory of linearized gravity via the Hamilton-Jacobi formalism. We make a brief review of this theory and its Lagrangian description, as well as a review of the Hamilton-Jacobi approach for singular systems. Then we apply this formalism to analyze the constraint structure of the linearized gravity in instant and front-form dynamics.Comment: To be published in Classical and Quantum Gravit

    An experimental investigation of the flow field for double-wedge configurations in a Mach 4.97 stream

    Get PDF
    The viscous-inviscid interactions which perturb the flow around the wing leading edge are discussed. The flow field perturbation results when the fuselage-generated shock wave interacts with the wing-generated shock wave. Three types of shock interference patterns are possible for the wing leading edge of the orbiter

    Non-linear Response of the trap model in the aging regime : Exact results in the strong disorder limit

    Full text link
    We study the dynamics of the one dimensional disordered trap model presenting a broad distribution of trapping times p(τ)1/τ1+μp(\tau) \sim 1/\tau^{1+\mu}, when an external force is applied from the very beginning at t=0t=0, or only after a waiting time twt_w, in the linear as well as in the non-linear response regime. Using a real-space renormalization procedure that becomes exact in the limit of strong disorder μ0\mu \to 0, we obtain explicit results for many observables, such as the diffusion front, the mean position, the thermal width, the localization parameters and the two-particle correlation function. In particular, the scaling functions for these observables give access to the complete interpolation between the unbiased case and the directed case. Finally, we discuss in details the various regimes that exist for the averaged position in terms of the two times and the external field.Comment: 27 pages, 1 eps figur

    Temperature in nonequilibrium systems with conserved energy

    Full text link
    We study a class of nonequilibrium lattice models which describe local redistributions of a globally conserved energy. A particular subclass can be solved analytically, allowing to define a temperature T_{th} along the same lines as in the equilibrium microcanonical ensemble. The fluctuation-dissipation relation is explicitely found to be linear, but its slope differs from the inverse temperature T_{th}^{-1}. A numerical renormalization group procedure suggests that, at a coarse-grained level, all models behave similarly, leading to a two-parameter description of their macroscopic properties.Comment: 4 pages, 1 figure, final versio

    From laser cooling to aging: a unified Levy flight description

    Full text link
    Intriguing phenomena such as subrecoil laser cooling of atoms, or aging phenomenon in glasses, have in common that the systems considered do not reach a steady-state during the experiments, although the experimental time scales are very large compared to the microscopic ones. We revisit some standard models describing these phenomena, and reformulate them in a unified framework in terms of lifetimes of the microscopic states of the system. A universal dynamical mechanism emerges, leading to a generic time-dependent distribution of lifetimes, independently of the physical situation considered.Comment: 8 pages, 2 figures; accepted for publication in American Journal of Physic

    Dynamical Analysis of Nearby ClustErs. Automated astrometry from the ground: precision proper motions over wide field

    Full text link
    The kinematic properties of the different classes of objects in a given association hold important clues about its member's history, and offer a unique opportunity to test the predictions of the various models of stellar formation and evolution. DANCe (standing for Dynamical Analysis of Nearby ClustErs) is a survey program aimed at deriving a comprehensive and homogeneous census of the stellar and substellar content of a number of nearby (<1kpc) young (<500Myr) associations. Whenever possible, members will be identified based on their kinematics properties, ensuring little contamination from background and foreground sources. Otherwise, the dynamics of previously confirmed members will be studied using the proper motion measurements. We present here the method used to derive precise proper motion measurements, using the Pleiades cluster as a test bench. Combining deep wide field multi-epoch panchromatic images obtained at various obervatories over up to 14 years, we derive accurate proper motions for the sources present in the field of the survey. The datasets cover ~80 square degrees, centered around the Seven Sisters. Using new tools, we have computed a catalog of 6116907 unique sources, including proper motion measurements for 3577478 of them. The catalogue covers the magnitude range between i=12~24mag, achieving a proper motion accuracy <1mas/yr for sources as faint as i=22.5mag. We estimate that our final accuracy reaches 0.3mas/yr in the best cases, depending on magnitude, observing history, and the presence of reference extragalactic sources for the anchoring onto the ICRS.Comment: Accepted for publication in A&
    corecore