17 research outputs found

    Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue

    Get PDF
    Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.This work was co-financed by FCT/MEC and FEDER under Program PT2020 (Project UID/EQU/50020/2013); by Fundacao para a Ciencia e Tecnologia under the strategic funding of UID/BIO/04469/2013 unit; and by Project POCTEP through Project RED/AGROTEC-Experimentation network and transfer for development of agricultural and agro industrial sectors between Spain and Portugal

    Application of an electronic tongue for Tunisian olive oils' classification according to olive cultivar or physicochemical parameters

    Get PDF
    Olive oil commercialization has a great impact on the economy of several countries, namely Tunisia, being prone to frauds. Therefore, it is important to establish analytical techniques to ensure labeling correctness concerning olive oil quality and olive cultivar. Traditional analytical techniques are quite expensive, time consuming and hardly applied in situ, considering the harsh environments of the olive industry. In this work, the feasibility of applying a potentiometric electronic tongue with cross-sensitivity lipid membranes to discriminate Tunisian olive oils according to their quality level (i.e., extra virgin, virgin or lampante olive oils) or autochthonous olive cultivar (i.e., cv ChĂ©toui and cv Shali) was evaluated for the first time. Linear discrimination analysis coupled with the simulated annealing variable selection algorithm showed that the signal profiles of olive oils hydroethanolic extracts allowed olive oils discrimination according to physicochemical quality level (classification model based on 25 signals enabling 84 ± 9% correct classifications for repeated K-fold cross-validation), and olive cultivar (classification model based on 20 signals with an average sensitivity of 94 ± 6% for repeated K-fold cross-validation), regardless of the geographical origin and olive variety or the olive quality, respectively. The results confirmed, for the first time, the potential discrimination of the electronic tongue, attributed to the observed quantitative response (sensitivities ranging from 66.6 to +57.7 mV/decade) of the E-tongue multi-sensors towards standard solutions of polar compounds (aldehydes, esters and alcohols) usually found in olive oils and that are related to their sensory positive attributes like green and fruity.This work was financially supported by Project POCI-01–0145-FEDER-006984–Associate Laboratory LSRE-LCM and by Project UID/QUI/00616/2013–CQ-VR both funded by FEDER—Fundo Europeu de Desenvolvimento Regional through COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI)—and by national funds through FCTFundação para a CiĂȘncia e a Tecnologia, Portugal. Strategic funding of UID/BIO/04469/2013 unit is also acknowledged. Nuno Rodrigues thanks FCT, POPH-QREN and FSE for the Ph.D. Grant (SFRH/ BD/104038/2014).info:eu-repo/semantics/publishedVersio

    Fruit quality trait discovery and metabolic profiling in sweet cherry genebank collection in Greece

    No full text
    The current study characterizes the physicochemical, sensory and bioactive compound traits of twenty-two sweet cherry accessions, namely breeding lines, landraces and modern cultivars, embodying the majority of Greek germplasm. The evaluated accessions differ in several quality traits including colour parameters and textural properties as well as sensory attributes, such as taste intensity and overall acceptance. Significant differences in primary metabolites, including fructose, glucose, sorbitol, malic acid were recorded among tested accessions. All genotypes were rich in polyphenols, primarily in quercetin-3,4-O-diglucoside, esculetin, rutin and neochlorogenic acid. An anthocyanins-related discrimination among accessions was also obtained based on cyanidin-3-O-rutinoside and peonidin glycosides content. Overall, the cultivars ‘Tsolakeika’ and ‘Bakirtzeika’ exhibited the higher consumer acceptance while the cultivars ‘Vasiliadi’ and ‘Tragana Edessis-Naousis’ and especially the breeding line ‘TxAg33’ contained high polyphenol levels. These results represent a valuable resource for future breeding efforts for sweet cherry cultivars with improved nutritional quality trait

    Genome sequence of the olive tree, Olea europaea

    Get PDF
    Background: The Mediterranean olive tree (Olea europaea subsp. europaea) was one of the first trees to be domesticated and is currently of major agricultural importance in the Mediterranean region as the source of olive oil. The molecular bases underlying the phenotypic differences among domesticated cultivars, or between domesticated olive trees and their wild relatives, remain poorly understood. Both wild and cultivated olive trees have 46 chromosomes (2n). Findings: A total of 543 Gb of raw DNA sequence from whole genome shotgun sequencing, and a fosmid library containing 155,000 clones from a 1,000+ year-old olive tree (cv. Farga) were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 443 kb, and a total length of 1.31 Gb, which represents 95 % of the estimated genome length (1.38 Gb). In addition, the associated fungus Aureobasidium pullulans was partially sequenced. Genome annotation, assisted by RNA sequencing from leaf, root, and fruit tissues at various stages, resulted in 56,349 unique protein coding genes, suggesting recent genomic expansion. Genome completeness, as estimated using the CEGMA pipeline, reached 98.79 %. Conclusions: The assembled draft genome of O. europaea will provide a valuable resource for the study of the evolution and domestication processes of this important tree, and allow determination of the genetic bases of key phenotypic traits. Moreover, it will enhance breeding programs and the formation of new varieties

    Genome Sequencing, Transcriptomics, and Proteomics

    No full text
    This review encompasses the current status of major areas of progress in olive tree genome sequencing, including insights into genome function derived from large-scale gene expressing profiling, and studies on genomic architecture of repetitive sequences, smaller RNA, and proteomics. Olive tree genomics, as well as other omics, is progressing owing to recent developments in next-generation sequencing (NGS) technologies. Biological insights, therefore, are not only resulted from the sequencing initiative, since from genetic mapping, gene expression profiling, gene discovery research, and proteomics over nearly last seven years a large amount of information has been provided by different laboratories. The availability of highquality genome assembly provides olive biologists with valuable new tools to improve and develop new varieties more efficiently, enabling the implementation of marker-assisted selection and genomic selection, and contributing to the comprehension of the molecular determinants of key traits peculiar to the species of olive tree and giving important clues concerning the evolution of its complex genome
    corecore