820 research outputs found

    Equivalence of the Siegert-pseudostate and Lagrange-mesh R-matrix methods

    Full text link
    Siegert pseudostates are purely outgoing states at some fixed point expanded over a finite basis. With discretized variables, they provide an accurate description of scattering in the s wave for short-range potentials with few basis states. The R-matrix method combined with a Lagrange basis, i.e. functions which vanish at all points of a mesh but one, leads to simple mesh-like equations which also allow an accurate description of scattering. These methods are shown to be exactly equivalent for any basis size, with or without discretization. The comparison of their assumptions shows how to accurately derive poles of the scattering matrix in the R-matrix formalism and suggests how to extend the Siegert-pseudostate method to higher partial waves. The different concepts are illustrated with the Bargmann potential and with the centrifugal potential. A simplification of the R-matrix treatment can usefully be extended to the Siegert-pseudostate method.Comment: 19 pages, 1 figur

    One-electron atomic-molecular ions containing Lithium in a strong magnetic field

    Full text link
    The one-electron Li-containing Coulomb systems of atomic type (li,e)(li, e) and molecular type (li,li,e)(li, li, e), (li,α,e)(li, \alpha, e) and (li,p,e)(li, p, e) are studied in the presence of a strong magnetic field B≤107B \leq 10^{7} a.u. in the non-relativistic framework. They are considered at the Born-Oppenheimer approximation of zero order (infinitely massive centers) within the parallel configuration (molecular axis parallel to the magnetic field). The variational and Lagrange-mesh methods are employed in complement to each other. It is demonstrated that the molecular systems LiH3+{\rm LiH}^{3+}, LiHe4+{\rm LiHe}^{4+} and Li25+{\rm Li}_{2}^{5+} can exist for sufficiently strong magnetic fields B≳104B \gtrsim 10^{4} a.u. and that Li25+{\rm Li}_{2}^{5+} can even be stable at magnetic fields typical of magnetars.Comment: 22 pages, 9 figures, 4 table

    Study of the 16O(p,gamma) Reaction at Astrophysical Energies

    Get PDF
    The Feshbach theory of the optical potential naturally leads to a microscopic description of scattering in terms of the many-body self-energy. We consider a recent calculation of this quantity for 16O and study the possibility of applying it at astrophysical energies. The results obtained for the phase shifts and the 16O(p,\gamma) capture suggest that such studies are feasible but the calculations require some improvement geared to this specific task.Comment: 4 pages, 3 figures; Proceedings of Nuclei In The Cosmos VIII, to appear in Nucl. Phys.

    Multichannel coupling with supersymmetric quantum mechanics and exactly-solvable model for Feshbach resonance

    Full text link
    A new type of supersymmetric transformations of the coupled-channel radial Schroedinger equation is introduced, which do not conserve the vanishing behavior of solutions at the origin. Contrary to usual transformations, these ``non-conservative'' transformations allow, in the presence of thresholds, the construction of potentials with coupled scattering matrices from uncoupled potentials. As an example, an exactly-solvable potential matrix is obtained which provides a very simple model of Feshbach-resonance phenomenon.Comment: 10 pages, 2 figure

    The All-Pay Auction with Complete Information

    Get PDF

    The All-Pay Auction with Complete Information

    Get PDF

    Toward a Spin- and Parity-Independent Nucleon-Nucleon Potential

    Get PDF
    A supersymmetric inversion method is applied to the singlet 1S0^1S_0 and 1P1^1P_1 neutron-proton elastic phase shifts. The resulting central potential has a one-pion-exchange (OPE) long-range behavior and a parity-independent short-range part; it fits inverted data well. Adding a regularized OPE tensor term also allows the reproduction of the triplet 3P0^3P_0, 3P1^3P_1 and 3S1^3S_1 phase shifts as well as of the deuteron binding energy. The potential is thus also spin-independent (except for the OPE part) and contains no spin-orbit term. These important simplifications of the neutron-proton interaction are shown to be possible only if the potential possesses Pauli forbidden bound states, as proposed in the Moscow nucleon-nucleon model.Comment: 9 pages, RevTeX, 5 ps figure

    A generalized Tullock contest

    Get PDF
    We construct a generalized Tullock contest under complete information where contingent upon winning or losing, the payoff of a player is a linear function of prizes, own effort, and the effort of the rival. This structure nests a number of existing contests in the literature and can be used to analyze new types of contests. We characterize the unique symmetric equilibrium and show that small parameter modifications may lead to substantially different types of contests and hence different equilibrium effort levels

    Microscopic description of the beta delayed deuteron emission from \bbox{^6}He

    Full text link
    The beta delayed deuteron emission from 6^6He is studied in a dynamical microscopic cluster model. This model gives a reasonably good description for all the subsystems of 6^6He and 6^6Li in a coherent way, without any free parameter. The beta decay transition probability to the 6^6Li ground state is underestimated by a few percents. The theoretical beta delayed deuteron spectrum is close to experiment but it is also underestimated by about a factor 1.7. We argue that, in spite of their different magnitudes, both underestimations might have a common origin. The model confirms that the neutron halo part of the 6^6He wave function plays a crucial role in quenching the beta decay toward the α\alpha + d channel.Comment: LATEX with REVTEX, Submitted to Phys. Rev. C, 11 pages, 3 figures (not included) are available upon request. ATOMKI-93/
    • …
    corecore