Tilburg University

The All-Pay Auction with Complete Information

Baye, M.; Kovenock, D.; de Vries, C.

Publication date:
1990

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Baye, M., Kovenock, D., \& de Vries, C. (1990). The All-Pay Auction with Complete Information. (CentER Discussion Paper; Vol. 1990-51). CentER.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

No. 9051
THE ALL-PAY AUCTION WITH COMPLETE INFORMATION
by Michael R. Baye, Dan Kovenock
and Casper G. de Vries
August 1990

ISSN 0924-7815

tHE ALL-PAY AUCTION WITH COMPLETE INFORMATION*

Michael R. Baye
Texas A\&M University
Dan Kovenock
Erasmus Universiteit Rotterdam
Purdue University
Casper G. de Vries
Katholieke Universiteit Leuven
Preliminary draft : March 1989 Working Paper : June 1990

Abstract

This paper provides an exhaustive and explicit description of the set of Nash equilibria in the n-player, first price sealed bid, all pay auction under complete information. Both the cases of homogeneous and heterogeneous valuations are analyzed. For the common values case with more than two players we show there is a unique symmetric equilibrium and a continuum of asymmetric equilibria. All of the equilibria, however, are payoff and revenue equivalent. With heterogeneous valuations, two new situations can arise. First, if the three highest valuations are strictly unequal then there is a unique asymmetric equilibrium. Second, with a single highest valuation and more than one player with the second highest valuation, there is a continuum of asymmetric equilibria. In both of these latter cases, the expected sum of the bids is below the second highest valuation, and depends on the strategies of the agents with the second highest valuation. Hence, while the equilibria are payoff equivalent, they are not revenue equivalent. The continua of asymmetric equilibria were missed by both the theoretical literature, and the applied literature on e.g. rent seeking and rent dissipation.


```
Mailing address : Center for Economic Studies Katholieke Universiteit Leuven E. Van Evenstraat 2B B-3000 Leuven BELGIUM
```

* We are grateful to Chuangyin Dang, Chaim Fershtman, Arthur Robson, Heinrich Ursprung and Ton Vorst for helpful conversations. The paper was completed while Baye was visiting the CentER for Economic Research at Tilburg University.

1. INTRODUCTION

Consider the public auction of a dollar, in which each of n-bidders places money in an envelope. The money in the envelopes is collected and kept by the seller, and the dollar is awarded to the bidder who placed the highest amount of money in his envelope (ties are broken in an arbitrary fashion). This auction, which is called an all-pay auction [cf. Moulin (1986 a,b) and Weber (1985)], is important because many economic problems under complete information have a similar structure. For example, Hillman and Samet (1987) and Hillman (1988) model lobbying as an all-pay auction, where the lobbying parties sweeten the decisionmaker by making a bribe, and the prize (a political favor) is awarded to the party having given the highest bribe. Similarly, much of the contest and principal agent literature under complete information is isomorphic to the all-pay auction; $c f$. Nalebuff and Stiglitz (1983) and Baye, Kovenock, and de Vries (1989b). Essentially, contests are an all-pay auction in effort : the person putting forth the greatest effort wins the prize, while the effort of other contestants goes unrewarded.

This paper completely characterizes the set of Nash equilibria in the all-pay auction with complete information. We show that the set of equilibria is much larger than had originally been thought. Moreover, in some economically interesting cases, the equilibria are not revenue equivalent.

Before we present a more specific statement of our results and their proofs, it is useful to describe our results vis à vis the existing literature on the all-pay auction. Two cases have been considered in the literature: (1) the case where all players value identically the prize, and (2) the case where some players value the prize more than others. For the case of homogeneous valuations, Hillman and Samet have shown that, in addition to a symmetric Nash equilibrium, there also exist a finite number of asymmetric equilibria. We extend this result by showing that there is actually a continuum of asymmetric
equilibria. In each equilibrium, at least two players randomize continuously over the union of the supports of the players. equilibrium mixed-strategies, while up to $n-2$ players may have a mass point at zero and only randomize over a strict subset of the union of other players' supports. The existence of these additional equilibria has obvious empirical implications. However, for the case of homogeneous valuations, all of these equilibria are payoff and revenue equivalent: The expected sum of the bids equals the value of the prize, and the net expected pay-off to each bidder is zero for all equilibria.

The second case is when several players have heterogeneous valuations of the prize. For the case where the second highest valuation of the prize is strictly greater than the third highest valuation ${ }^{1}$. Hillman and Riley (1989) have shown that there is a unique equilibrium and that only the two players with the highest valuations bid a positive amount withe positive probability. Furthermore, they show that if the highest valuation is strictly greater than the second highest, the expected sum of bids is less than the second-highest valuation.

We extend Hillman and Riley's analysis of the heterogeneous valuations case by considering other configurations of individual valuations. One of the more important configurations of valuations is where a single player values most the prize, while all other players value the prize at some common, lower value. This case is economically interesting, because in much of the literature on regulation [cf. Rogerson (1982)] and political contests [cf. Snyder (1989)], one player (usually an incumbent) is modeled as having an advantage over identical challengers. For this case, we show not only that there is a continuum of equilibria, but that the equilibria are not revenue equivalent: the expected sum of bids differs across equilibria.

[^0]The results presented in the present paper are important for two independent reasons. First, and as noted above, our results reveal a wider array of behavior consistent with equilibrium. Second, given the existing literature on the all-pay auction, one might be tempted to take two-ness as a necessary implication of contests. In fact. Hillman (1988. p. 66) claims that. if there are ties for the second highest valuation and a single highest valuation, only two agents will be active. Our results reveal that this is incorrect, and indeed the additional equilibria imply different expected revenues. The fact that there are additional equilibria and that the revenues differ across the equilibria serves as a caveat of Magee. Brock, and Young's (1989. p. 217) argument that two-ness is a general property of political contests. Our results reveal that this is correct only if two contenders value of prize more than all other contenders. This may be why there are typically more than two challengers to an incumbent in, for example, presidential campaigns.

The paper is organized is follows. Section 2 considers the case of homogeneous valuations, while Section 3 examines the situation where some agents have heterogeneous valuations of the prize. The full characterization of the continuum of equilibrium strategies requires several steps which are labelled as lemmas. The main results are collected in six theorems. Interestingly and importantly, we are able to derive closed form expressions for all the equilibrium strategies. Therefore, the reader can easily obtain the intuition behind the main results, e.g. verifying that the strategies satisfy the Nash property. by working out examples on the basis of these expressions. In fact, we employ this strategy to derive Theorem 6 on revenue non equivalence.

2. HOMOGENEOUS VALUATIONS

Suppose first that an object known to be worth $v>0$ dollars to each of n bidders is to be auctioned. The n bidders simultaneously write down a bid. If player i bids the most he wins the object. All players pay the seller the amount that they bid.

Without loss of generality let the strategy set be $X_{i}=[0, B]$, where $B>v$ is some large number. The payoff function for player in in game is

$$
u_{i}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}-x_{i} & \text { if } \exists j \text { s.t. } x_{j}>x_{i} \\ \left\{\frac{v}{m}-x_{i}\right. \\ v-x_{i} & \text { if ifies for high bid with } m-1 \text { others },\end{cases}
$$

Let \underline{s}_{i} and \bar{s}_{i} denote the lower and upper bound of player i's equilibrium bid distribution G_{i}. Also, let α_{i} denote the size of a masspoint in i 's distribution. Let u_{i}^{*} be player i 's equilibrium profit. It is easily shown that with more than one bidder there does not exist a Nash equilibrium in pure strategies. In order to construct the mixed-strategy Nash equilibria, we first obtain the supports of the mixed strategies in Lemmas 1-9.

Lemma 1: $\forall i, v \geq \bar{s}_{i} \geq s_{i} \geq 0$.

Proof: By setting $\mathbf{x}_{\mathrm{i}}=0$ each player can guarantee at least 0 . This rules out bids greater than v. Bids less than 0 are ruled out a priori.

Lemma 2: If $\exists \mathrm{i}$ such that $\underline{s}_{i} \geq \underline{s}_{j}$ and $\alpha_{i}\left(\underline{s}_{j}\right)=0$, then $\underline{s}_{j}=0$ and $\mathrm{G}_{\mathrm{j}}(0)=\lim _{\mathrm{x} \oint_{\mathrm{s}}} \mathrm{G}_{\mathrm{j}}(\mathrm{x})$. If, in addition, $\alpha_{\mathrm{i}}\left(\underline{\mathrm{s}}_{\mathrm{i}}\right)=0$, then $\mathrm{G}_{\mathrm{j}}(0)=\mathrm{G}_{\mathrm{j}}\left(\underline{\mathrm{s}}_{\mathrm{i}}\right)$.

Proof: Let $u_{j}\left(x_{j}, G_{-j}\right)$ denote j 's payoff to bidding x_{j} when strategies G_{-j} are employed by the other $n-1$ players. Now $u_{j}\left(\underline{s}_{j}, G_{-j}\right)=-\underline{s}_{j}<0$ for $\underline{s}_{j}>0$. Since the same holds for $u_{j}\left(x_{j}, G_{-j}\right)$ for $x_{j}<\underline{s}_{i}$, and $x_{j}=\underline{s}_{i}$ if $\alpha_{i}\left(\underline{s}_{i}\right)=0$, the claim follows.

Lemma 3: If $\underline{\mathbf{s}}_{1}=\ldots=\underline{\mathbf{s}}_{\mathrm{m}}>\underline{\mathbf{s}}_{\mathrm{m}+1} \geqslant \ldots 2 \underline{\mathbf{s}}_{\mathrm{n}}$ for n 2 m 22 , then $\exists \mathrm{i} \leq \mathrm{m}$ such that $\alpha_{\mathrm{i}}\left(\underline{s}_{\mathrm{i}}\right)=0$.

Proof: Suppose not. Then any i $\leq m$ has incentive to raise \underline{s}_{i} by ϵ small.

Lemma 4: If $\underline{\mathbf{s}}_{1}=\ldots=\underline{\mathbf{s}}_{\mathrm{m}}>\underline{\mathbf{s}}_{\mathrm{m}+1} \geq \ldots \geq \underline{\mathbf{s}}_{\mathrm{n}}$, for $\mathrm{n} \geq \mathrm{m} \geq 2$, then $\underline{s}_{i}=0 \forall i$.

Proof: Immediate from Lemmas 2 and 3.
L.emma 5: There exists no player i such that $\underline{s}_{i}>\underline{s}_{j} \forall j \neq 1$.

Proof: Suppose such a player did exist. If $\alpha_{i}\left(\underline{s}_{i}\right)=0$, from Lemma $2 \mathrm{G}_{\mathrm{j}}(0)=\mathrm{G}_{\mathrm{j}}\left(\underline{s}_{\mathrm{i}}\right) \forall \mathrm{j} \neq \mathrm{i}$, which implies that $\mathrm{u}_{\mathrm{i}}\left(\underline{s}_{\mathrm{i}}, \mathrm{G}_{-\mathrm{i}}\right)<$ $\lim u_{i}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{G}_{-\mathrm{i}}\right)$. If the claim held and $\alpha_{\mathrm{i}}\left(\underline{s}_{\mathrm{i}}\right)>0$ then $\mathrm{x}_{\mathrm{i}} 10$

$\forall \mathrm{j} \neq \mathrm{i}, \alpha_{\mathrm{j}}\left(\underline{\mathrm{s}}_{\mathrm{i}}\right)=0$, so $\mathrm{G}_{\mathrm{j}}(0)=\lim _{\mathrm{x}_{\mathrm{j}} \mathrm{T}_{\mathrm{s}}} \mathrm{G}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right)$ leads to a similar contradiction.

Lemma 6: $\underline{\mathrm{s}}_{\mathrm{i}}=0 \quad \forall \mathrm{i}$.

Proof: Immediate from Lemmas 4 and 5.

Lemma 7: $\mathrm{u}_{\mathrm{i}}^{*}=\mathrm{u}_{\mathrm{j}}^{*} \quad \forall \mathrm{i}, \mathrm{j}$.

Proof: Without loss of generality suppose $u_{i}^{*}<u_{j}^{*}$. Let \bar{s}_{j} be the upper bound of j 's support. $\mathrm{u}_{\mathrm{i}}^{*}<\mathrm{u}_{\mathrm{j}}^{*}=\mathrm{u}_{\mathrm{j}}\left(\bar{s}_{\mathrm{j}}, \mathrm{G}_{-\mathrm{j}}\right) \leq \lim$ $x_{i} \not \bar{s}_{j}$ $u_{i}\left(x_{i}, G_{-i}\right)$, a contradiction.

Lemma 8: $\mathrm{u}_{\mathrm{i}}^{*}=0 \quad \forall \mathrm{i}$.

Proof: If $\alpha_{i}(\underline{s} i)=0, \forall i$ we are through. If $\exists \mathrm{j}$ such that $\alpha_{j}\left(\underline{s}_{j}\right)>0$, then $u_{j}^{*}=0$ from Lemmas 3 and 6 , and with players receiving equal utility from Lemma $7, u_{i}^{*}=0 \quad \forall i$.

Lemma 9: $\exists \mathbf{i}, \mathrm{j}$ such that $\overline{\mathbf{s}}_{\mathrm{i}}=\overline{\mathbf{s}}_{\mathrm{j}}=\mathbf{v}$.

Proof: Suppose not. Let $\overline{\mathbf{s}}_{\mathrm{i}}$ be the second highest $\overline{\mathrm{s}}_{\mathrm{j}}$. The player with the highest \bar{s}_{j} can bid slightly above \bar{s}_{i} and earn $\mathrm{u}_{\mathrm{j}}=\mathrm{v}-\overline{\mathrm{s}}_{\mathrm{i}}>\mathrm{u}_{\mathrm{j}}^{*}$.

The nine lemmas above establish that $\underline{s}_{i}=0 \quad \forall i$; there exist two i's. say $i=1.2$. such that $\overline{\mathbf{s}}_{1}=\overline{\mathbf{s}}_{2}=\mathrm{v}$: and $\mathrm{u}_{\mathrm{i}}^{*}=0 \quad \forall \mathrm{i}$. We now pin down
the equilibrium distributions. Let $W\left(x_{i}\right)=v-x_{i}, L\left(x_{i}\right)=-x_{i}$,

Lemma 10: There are no point masses on the half open inverval $(0, v]$.

Proof : Suppose one of the cumulative distribution functions (c.d.f.s), say G_{i}, has a mass point at $x_{i} \in(0, v]$. By Lemma 6, $\forall \mathrm{x} \in(0, v] \mathrm{A}_{\mathrm{ij}} \mathrm{G}_{\mathrm{i}}>0$, and hence $\mathrm{A}_{\mathrm{ij}} \mathrm{G}_{\mathrm{i}}$ has an upward jump at $\mathrm{x}_{\mathrm{i}}, \forall \mathrm{j} \neq \mathrm{i}$. This follows directly from the monotonicity of the c.d.f.'s. For $\mathrm{x}_{\mathrm{i}}<\mathrm{v}$ this implies that it is worthwhile for j to transfer mass from an ϵ-neighborhood below x_{i} to some δ neighborhood above x_{i}. At $x_{i}=v i t$ pays for j to transfer mass from an ϵ-neighborhood below \mathbf{x}_{i} to zero. Thus, there would be an ϵ-neighborhood below \mathbf{x}_{i} in which no other player j would put mass. But then it is not an equilibrium strategy for player i to put mass at \mathbf{x}_{i}.

Lemma 11: The integrand

$$
\begin{equation*}
\mathrm{B}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right) \equiv \mathrm{W}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{A}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{L}\left(\mathrm{x}_{\mathrm{i}}\right)\left(1-\mathrm{A}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right)\right) \tag{1}
\end{equation*}
$$

is constant and equal to zero at the points of increase of G_{i} in the half-open interval $(0, \mathrm{v}]$ for all i .

Proof : By Lemma 10, there are no point masses in ($0, \mathrm{v}$]. Thus, $B_{i}\left(x_{i}\right)$ is the expected payof f to player i from bidding $x_{i} \in(0, v]$. If x_{i} is a point of increase of G_{i}, then player i must make its equilibrium payof f at x_{i}.

Lemma 12: Suppose x is a point of increase of G_{i} and G_{j} in ($0, v$]. Then $\mathrm{G}_{\mathrm{i}}=\mathrm{G}_{\mathrm{j}}$ at x .

Proof : By Lemma 8, $\mathrm{B}_{\mathrm{i}}(\mathrm{x})=\mathrm{B}_{\mathrm{j}}(\mathrm{x})=0$. From (1) we have

$$
W(x) G_{j}(x) A_{i j}(x)+L(x)\left[1-G_{j}(x) A_{i j}(x)\right]=0
$$

This implies $G_{j}(x) A_{i j}(x)=\frac{-L(x)}{W(x)-L(x)}=G_{i}(x) A_{j i}(x)$.

Division by $A_{i j}(x)=A_{j}(x)>0$ gives $G_{j}(x)=G_{i}(x)$.
(Note: $L(x)$ is negative in the half-open interval).

Lemma 13: For every i and every point of increase x of G_{i} in ($0, v$]. there is at least one $G_{j}, j \neq i$, such that G_{j} is increasing at x.

Proof: Because $\mathrm{B}_{\mathrm{i}}(\mathrm{x})$ is constant in a neighborhood about x by Lemma $11, \mathrm{~dB}_{\mathrm{i}}(\mathrm{x})=0$. Suppose contrary to the hypothesis that $d A_{i}(x)=0$. Totally differentiating $B_{i}(x)$ then gives $A_{i} d W+\left(1-A_{i}\right) d L=0$.
However, both $d W$ and $d L$ are negative and $A_{i}(x) \in(0,1]$. Hence, for dB_{i} to be zero, dA_{i} is necessarily positive. By the monotonicity of the G_{j} 's, at least one has to increase.

Lemma 14: If G_{i} is strictly increasing on some open interval (a,b), $0<a<b<v$, then G_{i} is strictly increasing on (a, v].

Proof : Without loss of generality, suppose, to the contrary, that G_{i} were constant on (b, c), $b<c \leq v$. Then from Lemma 10 , $\mathrm{G}_{\mathrm{i}}(\mathrm{b})=\mathrm{G}_{\mathrm{i}}(\mathrm{c})$. It is evident that there exists an $\epsilon>0$ such that on the interval ($b, b+\epsilon$) there exist at least two players, say h and k, with strictly increasing c.d.f.'s over the interval (otherwise mass would be moved down to b
by some player). Thus, for every $\mathrm{x} \in(\mathrm{b}, \mathrm{b}+\epsilon), \mathrm{B}_{\mathrm{h}}(\mathrm{x})=\mathrm{B}_{\mathrm{k}}(\mathrm{x})$ $=0$. Furthermore, since there are no mass points in the interval $(0, v], B_{h}(b)=B_{k}(b)=B_{i}(b)=0$ which, from arguments similar to those used in proving Lemma 12, implies that $\mathrm{G}_{\mathrm{h}}(\mathrm{b})=\mathrm{G}_{\mathrm{k}}(\mathrm{b})=\mathrm{G}_{\mathrm{i}}(\mathrm{b})>0$. But with $\mathrm{B}_{\mathrm{i}}(\mathrm{b})=\mathrm{B}_{\mathrm{h}}(\mathrm{b})=$ $\mathrm{B}_{\mathrm{h}}(\mathrm{x}) \forall \mathrm{x} \in(\mathrm{b}, \mathrm{b}+\epsilon)$, it must be that $\mathrm{B}_{\mathrm{i}}(\mathrm{x}) \leq \mathrm{B}_{\mathrm{h}}(\mathrm{x})$ $\forall x \in(b, b+\epsilon)$, since such values of x do not lie in i's support. But this implies that $A_{i}(x) \leq A_{h}(x)$, and hence that $G_{h}(x) \leq G_{i}(x)$, a contradiction to the fact that $G_{i}(b)=$ $G_{h}(b), G_{h}(x)$ is increasing on $(b, b+\epsilon)$, and $G_{i}(x)$ is constant on (b, b+ b).

Lemma 15: At least two players randomize continuously on [0, v].

Proof : Three cases are possible at 0 : (i) all players allocate all mass at 0 . (ii) all players have $G_{i}\left(x_{i}\right)=0$ at some $x_{i}>0$. or (iii) there is at least one player with $G_{i}\left(x_{i}\right)>0$ for all $x_{i}>0$ and $G_{i}(0)<1$. Cases (i) and (ii) are easily ruled out by previous lemmas. For the third case, by Lemmas 3 and 6 at least one of the players has $G_{i}(0)=0$. Lemmas 12, 13, and 14 then imply that there are at least two players that randomize continuously over $[0, v]$.

Lemma 16: Once G_{i} is constant on $a \operatorname{subset}(a, b), 0<a<b \leq v$, it is constant on $[0, b)$ and has a mass point at 0 .

Proof : The first part follows immediately from Lemma 14. The second part follows from Lemma 6.

The above lemmas imply the following result:

Theorem 1: The first price sealed bid all pay common values auction with complete information possesses two types of equilibria. Either all players use the same continuous mixed strategy with support [$0, \mathrm{v}]$, or at least two players randomize over [$0, v$] with each other player i randomizing over ($\left.b_{i}, v\right], b_{i}>0,2$ and having a masspoint at 0 equal to $G_{i}\left(b_{i}\right)$. When two or more players have a positive density over a common interval they play the same continuous mixed strategy over that interval.

Theorem 1 allows one to construct all of the equilibrium strategies explicitly. Suppose, without loss of generality. that players $i=$ $1.2 \ldots \mathrm{~h}, \mathrm{~h} \geq 2$, randomize continuously over [O, v] with players $\mathrm{i}=$ $h+1, \ldots, n$ randomizing continuously over $\left(b_{i}, v\right]$, with $b_{h+1} \leq b_{h+2}$ $\leq \ldots \leq b_{n} \leq v$. The equilibrium strategies are:

$$
\forall x \in\left[b_{n}, v\right]: \quad G_{i}(x)=\left[\frac{x}{v}\right]^{\frac{1}{n-1}} \quad i=1, \ldots, n ;
$$

$$
\forall x \in\left[0, b_{h+1}\right): \quad G_{i}(x)=\left[\frac{x}{v}\right]^{\frac{1}{h-1}}\left[\prod_{k>h} G_{k}\left(b_{k}\right)\right]^{\frac{-1}{h-1}} \quad i=1, \ldots . h
$$

$$
\mathrm{G}_{\mathrm{k}}(\mathrm{x})=\mathrm{G}_{\mathrm{k}}\left(\mathrm{~b}_{\mathrm{k}}\right) \quad \mathrm{k}=\mathrm{h}+1, \ldots, \mathrm{n} .
$$

[^1]The equilibria with $b_{h+1}=v$ are given in Moulin (1986b) for $h=n$. Somewhat more general is the case $b_{h+1}=v$, but $2 \leq h \leq n$, i.e. some agents can be inactive, which is discussed in Hillman and Samet (ibid., p. 72), Hillman (ibid., p. 66) and Hillman and Riley (ibid.. ft. 12). Hillman and Samet (ibid., p. 72) claim there are no other equilibria. Also, Proposition 1c in Hillman and Riley which claims that at most one agent spends zero with positive probability is erroneous. The analysis above shows there exists a continuum of asymmetric equilibria. Moreover, with more than two agents, a multitude of different point masses at zero are possible. Importantly, however, it turns out that all of the equilibria are revenue equivalent.

Theorem 2: (Revenue Equivalence) In the all-pay common value auction, the expected sum of the bids in any Nash equilibrium equals the value of the prize v.

Proof: By Lemma $8 \mathrm{E}\left[\mathrm{u}_{\mathrm{i}}\right]=0$, and hence $\mathrm{E}\left[\sum^{\mathrm{n}} \mathrm{u}_{\mathrm{i}}\right]=0$.
$i=1$
As u_{i} equals the expected revenue to player i minus the bid x_{i}, and total expected revenues are v, it follows that

$$
v-E\left[\sum_{i-1}^{n} x_{i}\right]=0
$$

Remark. The same result can be obtained through integration, see Baye, Kovenock and de Vries (1989b) for the n-player case with $b_{h+1}=$ v. For the other cases one has to evaluate the sum of integrals of the form

$$
(j-1) \int_{b_{j}}^{b_{j+1}} x d G_{i}(x)
$$

In this sum all terms except the first (equal to v) and the last (equal to 0) cancel.

From the bidders' point of view, all the equilibria are also payoff equivalent. This result was established in Lemma 7 above. Apart from these equivalences, all the equilibria share another interesting property. As is shown in Lemma 15, at least two agents have to randomize continuously over the support and have equal c.d.f.'s. Thus it takes at least two players to hold each contender down to the equilibrium payoff of zero. Trivially, with only one contender, he gets everything for nothing. Two seems enough to induce the perfectly competitive outcome, where all rents are competed away. The role of the other $n-2$ is less important in this sense. Also note the c.d.f.'s of the players who randomize over the entire support strictly first order stochastically dominate the other players' strategies. Whether the perfectly competitive outcome arises generally if there are at least two contenders, is now investigated by considering the case of heterogeneous valuations.

3. HETEROGENEOUS VALUATIONS

Suppose now that the bidders have heterogeneous valuations. Let v_{i} be the valuation of player i.

A. Unique Highest and Second Highest Valuations

We deal first with the case where $v_{1}>v_{2}>v_{3} \geqslant \ldots 2 v_{n} \geqslant 0$. Cases where one of the strict inequalities adjacent to v_{2} is weak require a separate analysis.

Lemma 1': $\forall \mathrm{i} \mathrm{v}_{\mathrm{i}} \geq \overline{\mathrm{s}}_{\mathrm{i}} \geq \underline{s}_{\mathrm{i}} \geq 0$.

Proof : Insert v_{i} in place of v in the proof of Lemma 1.

Lemma 2': Same as Lemma 2.

Lemma $3^{\prime}:$ If $\underline{s}_{1}=\ldots=\underline{s}_{m}>\underline{s}_{m+1}, \ldots, \underline{s}_{n}$ for $n \geq m \geq 2$ then $\exists i \leq m$ such that $\alpha_{i}\left(\underline{s}_{i}\right)=0$.

Proof: Suppose not. Then any $i \leq m$ has incentive to raise the bid \underline{S}_{i} by ϵ small, unless $\underline{s}_{i}=v_{i}$, in which case i has an incentive to reduce the bid v_{i} to 0 .

Lemma 4': Same as Lemma 4.

Lemma 5': Same as Lemma 5.

Lemma 6': Same as Lemma 6.

In the analysis that follows let \bar{s} be the upper bound of the union of the supports of the players' equilibrium bid distributions.

Lemma $7^{\prime}: \overline{\mathbf{s}} \leq \mathrm{v}_{2}$.

Proof: Player i would never put mass above v_{i} since setting the bid equal to 0 strictly dominates such a strategy. Player 1 clearly has no incentive to put mass in the interval ($\mathrm{v}_{2}, \mathrm{v}_{1}$].

Lemma 8': All players other than player 1 must place a mass point at 0.

Proof: By Lemma 6', $\mathbf{s}_{\mathbf{i}}=0 \forall \mathrm{i}$. Since $\overline{\mathbf{s}} \leq \mathrm{v}_{2}<\mathrm{v}_{1}$ player 1 must have an equilibrium payoff u_{1}^{*} of at least $\mathrm{v}_{1}-\mathrm{v}_{2}>0$. Thus, player 1 cannot have a mass point at 0 . This follows from Lemma 3^{\prime}, i.e. some player must put no mass at 0 , in which case player 1 with probability 1 would not submit the high bid at 0 , and would have payof $f u_{1}=0$ there. Since $\mathrm{u}_{1}^{*}>0$. in every neighborhood above 0 player 1 must outbid every other player with a probability that is bounded away from zero. Thus, every player but player 1 must put a mass point at 0 .

Lemma 9': $\forall \mathrm{i} \neq 1 \quad \mathrm{u}_{\mathrm{i}}^{*}=0$.

Proof: Immediate from Lemmas 3^{\prime} and 8^{\prime}.

Lemma 10': $\overline{\mathbf{s}}=\mathbf{v}_{2}$ and $\overline{\mathbf{s}}_{1}=\overline{\mathbf{s}}_{2}=\mathbf{v}_{2}$.

Proof: From Lemma $7, \bar{s} \leq \mathbf{v}_{2}$. Suppose $\overline{\mathbf{s}}<\mathbf{v}_{2}$. By bidding above $\overline{\mathbf{s}}$ by an arbitrarily small amount player 2 can earn arbitrarily close to $v_{2}-\bar{s}>0=u_{2}^{*}$, a contradiction. Thus, $\bar{s}=v_{2}$. The second part of the claim is straightforward.

Lemma 11': There are no point masses on the half open interval $\left(0, v_{2}\right]$.

Proof : Similar to the proof of Lemma 10, inserting v_{2} for v the first two times that v appears in the proof, and v_{j} for v the last two times it appears.

Lemma 12': $\mathrm{B}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right) \equiv\left(\mathrm{v}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}\right) \mathrm{A}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right)-\mathrm{x}_{\mathrm{i}}\left(1-\mathrm{A}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right)\right)$ is constant and equal to u_{i}^{*} at the points of increase of G_{i} in $\left(0, v_{2}\right]$ for all i. $B_{i}\left(x_{i}\right) S u_{i}^{*}$ if x_{i} is not a point of increase in (O. v_{2}].

Proof: Similar to Lemma 11.

Lemma 13': $\forall \mathrm{x} \in\left(0, \mathrm{v}_{2}\right] \exists \mathrm{i}_{1}, \mathrm{i}_{2}$ such that $\forall \epsilon>0: \mathrm{G}_{\mathrm{i}}(\mathrm{x}+\epsilon)-\mathrm{G}_{\mathrm{i}}(\mathrm{x}-\epsilon)$ $>0, i=i_{1}, i_{2}$.

Proof: Immediate.

Lemma 14': $\bar{s}_{i}=0 \quad \forall i>2$.
Proof: Without loss of generality assume $\overline{\mathbf{s}}_{3}=\max _{i \geq 3} \overline{\mathbf{s}}_{\mathrm{i}}$. Suppose $\bar{s}_{3} \neq 0$. Then there exists an interval of increase $\left(\bar{s}_{3}-\epsilon, \bar{s}_{3}\right]$ in which $B_{3}(x)=u_{3}^{*}=0=\left(v_{3}-x\right) A_{3}(x)-x\left(1-A_{3}(x)\right)$. Thus, $v_{3}=\frac{x}{A_{3}(x)} \quad \forall x \in\left(\bar{s}_{3}-\epsilon, \bar{s}_{3}\right]$. But as G_{1} and G_{2} are increasing on $\left(\bar{s}_{3}, v_{2}\right], v_{2}=\frac{\bar{s}_{3}}{A_{2}\left(\bar{s}_{3}\right)}$. Since for $\bar{s}_{3}>0, A_{2}\left(\bar{s}_{3}\right)=$ $\Pi G_{j}\left(\bar{s}_{3}\right)>\Pi G_{j}\left(\bar{s}_{3}\right)=A_{3}\left(\bar{s}_{3}\right)$, we have a contradiction $\mathrm{j} \neq 2 \quad \mathrm{j} \neq 3$ to the fact that $v_{3}<v_{2}$. Thus. $\bar{s}_{3}=0$.

The above analysis establishes rigorously the following result originally formulated by Hillman (ibid.), and Hillman and Riley (ibid.):

Theorem 3: (Hillman and Riley) If $\mathrm{v}_{1}>\mathrm{v}_{2}>\mathrm{v}_{3} 2 \ldots 2 \mathrm{v}_{\mathrm{n}}$, then players 1 and 2 will randomize continuously over $\left(O, v_{2}\right]$, with player 2 having a mass point at 0 and all other players
bidding 0 with probability one. The c.d.f.'s used by players 1 and 2 over the interval $\left[0, v_{2}\right]$ are $G_{1}(x)=\frac{x}{v_{2}}$ and $G_{2}(x)=\frac{v_{1}-v_{2}}{v_{1}}+\frac{x}{v_{1}}$. respectively. Players 2 through n earn a payoff of 0 and player 1 earns a payof $f u_{1}^{*}=v_{1}-v_{2}$.

Through integration Corollary 1 of Hillman and Riley (ibid., p. 25) on the expected sum of bids is easily verified.

Theorem 4: If $\mathbf{v}_{1}>\mathbf{v}_{2}>\mathrm{v}_{3} \geq \ldots \geq \mathrm{v}_{\mathrm{n}}$, the expected sum of the bids in the all-pay auction is

$$
E\left[x_{1}+x_{2}\right]=\frac{1}{2} v_{2}+\frac{1}{2} v_{2}\left(\frac{v_{2}}{v_{1}}\right) .
$$

Note that the average sum of bids is now below the second highest valuation v_{2}. The intuition behind this result is as follows. With equal valuations, i.e. $\left(v_{2} / v_{1}\right)=1$. each player bids half the prize on average. With unequal valuations, player 2 still bids $\mathrm{v}_{2} / 2$ conditional upon bidding actively. This happens with probability $\mathrm{v}_{2} / \mathrm{v}_{1}$.

B. Unique Highest but Multiple Second-Highest Valuations

We now deal with the case where $\mathbf{v}_{2}=\mathbf{v}_{3}=\ldots=\mathbf{v}_{\mathrm{m}}, \mathrm{m} \leq \mathrm{n}$. These cases again lead to multiple equilibria. We first deal with the case where $\mathrm{v}_{1}>\mathrm{v}_{\mathbf{2}}=\mathrm{v}_{3}=\ldots=\mathrm{v}_{\mathrm{m}}>\mathrm{v}_{\mathrm{m}+1} \geq \ldots \geq \mathrm{v}_{\mathrm{n}}$ for some $3 \leq \mathrm{m} \leq \mathrm{n}$. It is easily seen that for this case Lemmas 1^{\prime} through 9^{\prime} hold. Lemmas 11° through 13^{\prime} also continue to hold (with an obvious alteration in the labeling of players in the proof of Lemma 11'). Lemmas 10^{\prime} and 14^{\prime} must be slightly altered as follows; the proofs require only a minor change in the labeling of players:

Lemma $10^{\prime \prime}: \bar{s}=v_{2}$. There exists at least one player $i, 2 \leq i \leq m$, such that $\overline{\mathrm{s}}_{\mathrm{i}}=\mathrm{v}_{2}$.

Lemma 14": $\overline{\mathrm{s}}_{\mathrm{i}}=0 \forall \mathrm{i}>\mathrm{m}$.

If $n>m$ we may set $\underline{s}_{i}=\bar{s}_{i}=0$ for $i>m$ and proceed with the analysis of the game as if we had an m player game with $\mathrm{v}_{1}>\mathrm{v}_{2}=\mathrm{v}_{3}=$ $\ldots=v_{m}$. Suppose then that $n=m$, so that $v_{1}>v_{2}=v_{3}=\ldots=v_{n}$. The following versions of Lemmas 12 and 14 hold for players $2, \ldots, n$.

Lemma 15": Suppose x is a point of increase of G_{i} and G_{j} in $\left(0, v_{2}\right]$, $\mathrm{i}, \mathrm{j} \in\{2, \ldots, \mathrm{n}\}$. Then $\mathrm{G}_{\mathrm{i}}=\mathrm{G}_{\mathrm{j}}$ at x .

Proof: Same as proof of Lemma 12.

Lemma 16": If G_{i}, $\mathrm{i} \in\{2 \ldots \mathrm{n}\}$, is strictly increasing on some open subset $(a, b), 0<a<b<v_{2}$, then G_{i} is strictly increasing on the whole interval (a, v_{2}].

Proof: Similar to the proof of Lemma 14 where one of the players h, k must be an element of $\{2, \ldots, n\}$ and this player is used throughout the continuation of the proof.

Lemma $16^{\prime \prime}$ together with Lemmas $10^{\prime \prime}$ and 13^{\prime} imply the following:

Lemma 17": At least one of the players $2, \ldots . n$ must randomize on the interval [$0, \mathrm{v}_{2}$].

Lemma 18": $\bar{s}_{1}=v_{2}$, and for every bid $0<x<v_{2}$ in the support of G_{1}, $\mathrm{G}_{1}(\mathrm{x})<\mathrm{G}_{\mathrm{i}}(\mathrm{x}), \mathrm{i} \in\{2, \ldots, \mathrm{n}\}$.

Proof: From Lemma 17" at least one of the players 2, n has support $\left[0, v_{2}\right]$. Without loss of generality, suppose that player 2 is such a player. From Lemmas 3^{\prime} and 8^{\prime} player 1 does not have a mass point at 0 , and from Lemma $11^{\prime \prime}$ no player has a mass point in ($0, v_{2}$]. Thus, there exists some point $x \in\left(0, v_{2}\right)$ at which $G_{1}(x)$ is increasing. At any such point $B_{1}(x) \geq v_{1}-v_{2}$, since the right hand side is what player 1 can obtain by bidding \mathbf{v}_{2}. Rearranging this expression we obtain

$$
A_{1}(x) \geq \frac{v_{1}-v_{2}+x}{v_{1}}
$$

From Lemmas 9° and 12'

$$
A_{2}(x)=\frac{x}{v_{2}}
$$

Subtracting A_{1} from A_{2} gives

$$
\leq \frac{\left(v_{2}-x\right)\left(1-\frac{v_{1}}{v_{2}}\right)}{v_{1}}<0,
$$

where the strict right hand inequality follows from the assumption that $v_{2}>x$ and $v_{1}>v_{2}$. Thus, at any point of increase of G_{1} in $\left(0, v_{2}\right), A_{1}>A_{2}$. This directly implies that $G_{2}>G_{1}$ for any such point.

But since G_{2} has support $\left[0, v_{2}\right]$ and G_{1} has no mass points. this implies $\bar{s}_{1}=\mathbf{v}_{2}$. Furthermore, since for any other player $\mathrm{i} \in\{2, \ldots, \mathrm{n}\}$ and for any $\mathrm{x} \in\left[0, \mathrm{v}_{2}\right], \mathrm{G}_{2}(\mathrm{x})$ $\leq \mathrm{G}_{\mathrm{i}}(\mathrm{x})$, we have the claim.

An immediate consequence of Lemma $18^{\prime \prime}$ and the fact that G_{1} has no mass points is that $G_{i}(x) \geq G_{1}(x)$ for every $x \in\left[0, v_{2}\right] i=2, \ldots, n$, with strict inequality on the open interval. Thus, each $\mathrm{G}_{\mathrm{i}}(\mathrm{x})$ is stochastically dominated by $G_{1}(x)$.

The next Lemma uses the result that $\bar{s}_{1}=v_{2}$ to show that the support of $\mathrm{G}_{1}(\mathrm{x})$ is $\left[\mathrm{O}, \mathrm{v}_{2}\right]$.

Lemma 19": The support of $\mathrm{G}_{1}(\mathrm{x})$ is $\left[0, \mathrm{v}_{2}\right]$.

Proof: We know that $\bar{s}_{1}=v_{2}$ and $\underline{s}_{1}=0$. Suppose there is a gap (a,b) in which $G_{1}(x)$ is constant, $0<a<b<v_{2}$.

By Lemmas 12' and 13^{\prime} we know that at $\mathrm{x}=\mathrm{a}$ there are at least two players $i, k \in\{2, \ldots, n\}$ such that $A_{i}(x)=A_{k}(x)=$ $\frac{x}{v_{2}}$. At $x=b$ this holds as well. In addition, since a and b are in the support of G_{1}

$$
A_{1}(a)=\frac{v_{1}-v_{2}}{v_{1}}+\frac{a}{v_{1}}
$$

and

$$
A_{1}(b)=\frac{v_{1}-v_{2}}{v_{1}}+\frac{b}{v_{1}}
$$

Thus, we have

$$
\begin{equation*}
G_{1} \text { (a) } G_{k}(a) A_{i k 1}(a)=\frac{a}{v_{2}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
G_{1} \text { (b) } G_{k}(b) A_{i k 1}(b)=\frac{b}{v_{2}} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{G}_{\mathrm{i}} \text { (a) } \mathrm{G}_{\mathrm{k}} \text { (a) } A_{\mathrm{ik} 1} \text { (a) }=\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{\mathrm{v}_{1}}+\frac{\mathrm{a}}{\mathrm{v}_{1}} \text {; and } \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
G_{i} \text { (b) } G_{k}(b) A_{i k 1}(b)=\frac{v_{1}-v_{2}}{v_{1}}+\frac{b}{v_{1}} \tag{4}
\end{equation*}
$$

Since $G_{1}(a)=G_{1}(b)$ by assumption, and by Lemma $15^{\prime \prime} G_{i}(x)=$ $\mathrm{G}_{\mathrm{k}}(\mathrm{x})$ for $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$. (1) and (2) imply

$$
\frac{G_{k}(a)}{G_{k}(b)} \frac{A_{i k 1}(a)}{A_{i k 1}(b)}=\frac{a}{b} \text {, while (3) and (4) imply }
$$

$$
\frac{\left[G_{k}(a)\right]^{2}}{\left[G_{k}(b)\right]^{2}} \frac{A_{i k 1}(a)}{A_{i k 1}(b)}=\frac{v_{1}-v_{2}+a}{v_{1}-v_{2}+b}
$$

Combining this gives $\frac{G_{k}(a)}{G_{k}(b)} \frac{a}{b}=\frac{v_{1}-v_{2}+a}{v_{1}-v_{2}+b}$. Hence,

$$
\begin{aligned}
G_{k}(a) & =\frac{b}{a}\left(\frac{v_{1}-v_{2}+a}{v_{1}-v_{2}+b}\right) G_{k}(b) \\
& =\frac{b}{a}\left(\frac{\phi+a}{\phi+b}\right) G_{k}(b), \text { say, for } \phi>0 .
\end{aligned}
$$

Since $\frac{b}{a}>\frac{b+\phi}{a+\phi}$, this implies $\frac{b(a+\phi)}{a(b+\phi)}>1$. It follows that $\mathrm{G}_{\mathrm{k}}(\mathrm{a})>\mathrm{G}_{\mathrm{k}}(\mathrm{b})$, a contradiction to the fact that $\mathrm{b}>\mathrm{a}$. Thus there cannot be an interval contained in $\left(0, v_{2}\right)$ over which player 1 places no mass.

We have therefore established the following:

Theorem 5: If $\mathbf{v}_{1}>\mathbf{v}_{2}=\ldots=\mathrm{v}_{\mathrm{n}}$, player 1 randomizes continuously over the interval $\left[0, v_{2}\right]$ and at least one of the players $2, \ldots, n$ does the same. Each player i, $i \in\{2, \ldots n\}$, has a strategy with support contained in $\left[0, v_{2}\right]$: each $i \in\{2, \ldots, n\}$ places a mass point $\alpha_{i}(0)$ at 0 (the size of which may
differ across players): and each $i \in\{2, \ldots n\}$ can be characterized by a number $b_{i} \geq 0$ such that $G_{i}(x)=G_{i}(0)=\alpha_{i}(0)$ $\forall x \in\left[0, b_{i}\right]$ (where b_{i} could be greater than v_{2}, in which case $\alpha_{i}(0)=1$) and player i randomizes continuously on (b_{i}, v_{2}]. Furthermore, when two or more players in the set $\{2, \ldots, n\}$ have a positive density over a common interval, they play the same continuous mixed strategy over that interval. Moreover, $u_{1}^{*}=v_{1}-v_{2}$ and $u_{j}^{*}=0$ for $j \neq 1$.

We are now able to provide exact expressions for the equilibrium distributions conditional on the (arbitrary) points, $b_{i}, i \in\{2, \ldots, n\}$ at which players start randomizing continuously. The distributions may be obtained recursively over $\left[0, v_{2}\right]$.

Suppose without loss of generality that of the players $\{2, \ldots, n\}$ players $i=2, \ldots h, h \geq 2$ randomize continuously over $\left(0, v_{2}\right]$, with players $i=h+1 \ldots, n$ randomizing continuously over $\left(b_{i}, v_{2}\right]$, (where b_{i} $=v_{2}$ implies $\left.\alpha_{i}(0)=1\right)$ with $b_{h+1} \leq b_{h+2} \leq \ldots \leq b_{n} \leq v_{2}$. Then

$$
\begin{aligned}
& \forall x \in\left[b_{n}, v_{2}\right]: \quad G_{i}(x)=\left[\frac{v_{1}-v_{2}+x}{v_{1}}\right]^{\frac{1}{n-1}} \quad i=2, \ldots, n \\
& \mathrm{G}_{1}(\mathrm{x})=\frac{\mathrm{x}}{\mathrm{v}_{2}}\left[\frac{\mathrm{v}_{1}-\mathrm{v}_{2}+x}{v_{1}}\right]^{\frac{2-n}{n-1}} ; \\
& \underset{\substack{ \\
j \in\{h+1, \ldots, n-1\}}}{\forall x \in\left[b_{j}, b_{j+1}\right):} G_{i}(x)=\left[\frac{v_{1}-v_{2}+x}{v_{1}}\right]^{\frac{1}{j-1}} \underset{k>j}{\left[G_{k}\left(b_{k}\right)\right]^{\frac{-1}{j-1}} \quad i=2, \ldots, j} \\
& \mathrm{G}_{\mathrm{k}}(\mathrm{x})=\mathrm{G}_{\mathrm{k}}\left(\mathrm{~b}_{\mathrm{k}}\right) \quad \mathrm{k}=\mathrm{j}+1, \ldots, \mathrm{n} \text {; } \\
& G_{1}(x)=\frac{x}{v_{2}}\left[\frac{v_{1}-v_{2}+x}{v_{1}}\right]^{\frac{2-j}{j-1}}\left[\prod_{k>j} \quad G_{k}\left(b_{k}\right)\right]^{\frac{-1}{j-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \forall x \in\left[0, b_{h+1}\right): \quad G_{i}(x)=\left[\frac{v_{1}-v_{2}+x}{v_{1}}\right]^{\frac{1}{h-1}}\left[\prod_{k>h} G_{k}\left(b_{k}\right)\right]^{\frac{-1}{h-1}} \quad i=2, \ldots h \\
& \mathrm{G}_{\mathrm{k}}(\mathrm{x})=\mathrm{G}_{\mathrm{k}}\left(\mathrm{~b}_{\mathrm{k}}\right) \\
& G_{1}(x)=\frac{x}{v_{2}}\left[\frac{v_{1}-v_{2}+x}{v_{1}}\right]^{\frac{2-h}{h-1}} \underset{k>h}{\left[G_{k}\left(b_{k}\right)\right]^{\frac{-1}{h-1}} . ~}
\end{aligned}
$$

From Theorem 5 it is immediate that all equilibria are payoff equivalent, as before. Interestingly, in contradistinction with the case of homogeneous valuations, c.f. Theorem 2, in case of heterogeneous valuations the possibility of revenue non equivalence arises.

Lemma 20": If $\mathrm{v}_{1}>\mathrm{v}_{2}=\ldots=\mathrm{v}_{\mathrm{n}}$, then the expected revenue is

$$
\begin{aligned}
\sum_{i=1}^{n} E\left(x_{i}\right) & =\left\{v_{2}-\left(\frac{v_{1}}{v_{2}}-1\right)\left[(n-1) v_{2}-\frac{(n-1)^{2}}{n} v_{1}\right]\right\} \\
& -\left(\frac{v_{1}}{v_{2}}-1\right)\left\{v_{1} \frac{(h-1)^{2}}{h}\left(\frac{v_{1}-v_{2}}{v_{1}}\right) \frac{h}{h-1}\left[\prod_{k=h+1}^{n} G_{k}\left(b_{k}\right)\right]^{\frac{-1}{h-1}}\right\} \\
& -\left(\frac{v_{1}}{v_{2}}-1\right) \sum_{j=h}^{n-1} G_{j+1}\left(b_{j+1}\right)\left[\left(1-\frac{1}{j(j+1)}\right)\left(v_{1}-v_{2}\right)-\frac{1}{j(j+1)} b_{j+1}\right] .
\end{aligned}
$$

Proof: Evidently $E\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} E\left(x_{i}\right)=$

$$
\begin{aligned}
& \int_{b_{11}}^{v_{2}} x d G_{1}(x)+(n-1) \int_{b_{n}}^{v_{2}} x \mathrm{dG}_{1}(x)+\ldots+ \\
& \int_{b_{j}}^{b_{j+1}} x \mathrm{dG}_{1}(x)+(j-1) \int_{b_{j}}^{b_{j+1}} x \mathrm{dG}_{\mathrm{i}}(x)+\ldots+ \\
& \int_{0}^{b_{h+1}} x \mathrm{dG}_{1}(x)+(h-1) \int_{0}^{b_{h+1}} x \mathrm{dG}_{\mathrm{i}}(x) .
\end{aligned}
$$

where the indices h, i, j, k, n have the same connotation as in in the expressions for the distributions below Theorem 5. Through integration by parts and using the fact that $G_{1}(x)=$ $x(j-1) v_{1} v_{2}^{-1} \mathrm{dG}_{\mathrm{i}}(\mathrm{x})$, $\mathrm{i} \in\{2, \ldots, n\}$, obtain the following expression for the contribution to the total expected efforts on a particular interval $\left[b_{j}, b_{j+1}\right): 3$

$$
\begin{aligned}
& \int_{b_{j}}^{b_{j}+1} x \mathrm{dG}_{1}(x)+(j-1) \int_{b_{j}}^{b_{j}+1} x \mathrm{dG}_{\mathrm{i}}(x)= \\
& \frac{1}{v_{2}}\left[\prod_{k>j} G_{k}\left(b_{k}\right)\right]^{\frac{-1}{j-1}}\left\{b_{j+1}^{2}\left[\frac{v_{1}-v_{2}+b_{j}+1}{v_{1}}\right]^{\frac{2-j}{j-1}}\right. \\
& -b_{j}^{2}\left[\frac{v_{1}-v_{2}+b_{j}}{v_{1}}\right]^{\frac{2-j}{j-1}}
\end{aligned}
$$

[^2]\[

$$
\begin{aligned}
& -(j-1)\left(v_{1}-v_{2}\right)\left\{b_{j+1}\left[\frac{v_{1}-v_{2}+b_{j}+1}{v_{1}}\right]^{\frac{1}{j-1}}-b_{j}\left[\frac{v_{1}-v_{2}+b_{j}}{v_{1}}\right]^{\frac{1}{j-1}}\right. \\
& \left.\left.-v_{1} \frac{j-1}{j}\left[\frac{v_{1}-v_{2}+b_{j+1}}{v_{1}}\right]^{\frac{j}{j-1}}+v_{1} \frac{j-1}{j}\left[\frac{v_{1}-v_{2}+b_{j}}{v_{1}}\right]^{\frac{j}{j-1}}\right\}\right\} .
\end{aligned}
$$
\]

To obtain the total expected effort, take the sum over j, where $\mathrm{j}=\mathrm{h}+1, \ldots, \mathrm{n}-1$, plus the first and last interval as well. The resulting expression can be considerably simplified by noting that consecutive terms in the sum do cancel or can be combined, c.f. the Remark below Theorem 2. Note that

$$
\prod_{k>j} G_{k}\left(b_{k}\right)=\left[\frac{v_{1}-v_{2}+b_{j}+1}{v_{1}}\right]^{\frac{1}{j}}\left[\prod_{k>j+1} G_{k}\left(b_{k}\right)\right]^{\frac{j-1}{j}} .
$$

Use this to show that

$$
\begin{aligned}
& -\left[\prod_{k>j+1} G_{k}\left(b_{k}\right)\right]^{\frac{-1}{j}} b_{j+1}^{2}\left[\frac{v_{1}-v_{2}+b_{j+1}}{v_{1}}\right]^{\frac{1-j}{j}} \\
& +\left[\prod_{k>j} G_{k}\left(b_{k}\right)\right]^{\frac{-1}{j-1}} b_{j+1}^{2}\left[\frac{v_{1}-v_{2}+b_{j+1}}{v_{1}}\right]^{\frac{2-j}{j-1}}=0 .
\end{aligned}
$$

Which implies that the first element of the j-th summand cancels against the second element of the ($j+1$)-th summand. For the third and fourth elements a similar procedure gives terms

$$
-G_{j+1}\left(b_{j+1}\right) b_{j+1}
$$

and for the last two elements we get terms

$$
v_{1}\left(1-\frac{1}{j(j+1)}\right) G_{j+1}\left(b_{j+1}\right) .
$$

Taking care of what happens at 0 and v_{2}, then gives

$$
\begin{aligned}
& \Sigma_{i} E\left(x_{i}\right)=v_{2}-\left(\frac{v_{1}}{v_{2}}-1\right)\left[(n-1) v_{2}-\Sigma_{j} G_{j+1}\left(b_{j+1}\right) b_{j+1}\right] \\
& -\left(\frac{v_{1}}{v_{2}}-1\right)\left[v_{1} \frac{(h-1)^{2}}{h}\left(\frac{v_{1}-v_{2}}{v_{1}}\right)^{\frac{h}{h-1}} \underset{k}{\left(\Pi G_{k}\left(b_{k}\right)\right)^{\frac{-1}{h-1}}-v_{1} \frac{(n-1)^{2}}{n}}\right. \\
& \left.+v_{1} \Sigma_{j}\left(1-\frac{1}{j(j+1)}\right) G_{j+1}\left(b_{j+1}\right)\left(\frac{v_{1}-v_{2}+b_{j+1}}{v_{1}}\right)\right] .
\end{aligned}
$$

Some further manipulations gives the expression stated in the theorem. This expression consists of three terms. For given n, the first term is fixed. The second and third terms, however, are generally nonzero and depend on h and b_{k}. Therefore total expected revenue varies with h and b_{k} for given n.

Theorem 5 and Lemma 20" generalize the two player heterogeneous valuation case discussed in Theorems 3 and 4. Hillman (ibid. . p. 66) erroneously claims that the equilibrium bid distributions given in Theorem 3 also constitute the unique equilibrium strategies if $\mathrm{v}_{1}>\mathrm{v}_{2}=\ldots=\mathrm{v}_{\mathrm{n}}$. Moreover. Hillman and Riley explicitly rule out a tie between the second and third agent, c.f. their Proposition 4. Hence, both the equilibrium where all $2, \ldots n$ players employ the symmetric strategy and most of the asymmetric equilibrium strategies are missed. This is not innocuous because of our Lemma 20". From the expression for the expected sum of bids Theorem 2 immediately follows as a special case by setting $v_{1}=v_{2}$. But revenue non equivalence arises whenever $v_{1}>v_{2}=\ldots=v_{n}$. To see this, consider the case with 3 players such that $v_{1}=2, v_{2}=v_{3}=1$ and calculate the expected sum of bids. For the completely asymmetric equilibrium with strategies $G_{1}(x)=x, G_{2}(x)=(1+x) / 2$ and $G_{3}(x)=1,0 \leq x \leq 1$, we get that $\Sigma_{i} E\left(x_{i}\right)=5 / 3-1 / 4-4 / 6=3 / 4$. For the case where players 2 and 3 play symmetrically, the equilibrium strategies are

$$
\mathrm{G}_{1}(\mathrm{x})=\mathrm{x}\left(\frac{1+\mathrm{x}}{2}\right)^{-1 / 2}, \mathrm{G}_{2}(\mathrm{x})=\mathrm{G}_{3}(\mathrm{x})=\left(\frac{1+\mathrm{x}}{2}\right)^{1 / 2},
$$

and hence

$$
\Sigma_{i} E\left(x_{i}\right)=\frac{5}{3}-\frac{2}{3} \sqrt{ }
$$

For the case where players 2 and 3 employ identical strategies on $[1 / 2,1]$. but player 2 places probability mass of $\checkmark(3 / 4)$ at 0 , the distributions are defined on $[1 / 2,1]$ as in the symmetric case. On $[0,1 / 2)$ they are defined by

$$
\mathrm{G}_{1}(\mathrm{x})=\mathrm{x} \sqrt{ }(4 / 3), \quad \mathrm{G}_{2}(\mathrm{x})=\frac{1+\mathrm{x}}{2} \sqrt{ }(4 / 3), \quad \mathrm{G}_{3}(\mathrm{x})=\sqrt{ }(3 / 4)
$$

In this case, $\Sigma_{i} E\left(x_{i}\right)=\frac{5}{3}-\frac{1}{6} \sqrt{ } 3-\frac{3}{8} \sqrt{ } 3=\frac{5}{3}-\frac{13}{24} \sqrt{ } 3$.

Thus we have shown :

Theorem 6: (Revenue Non Equivalence) : If $\mathbf{v}_{1}>\mathrm{v}_{2}=\ldots=\mathrm{v}_{\mathrm{n}}$, not all Nash equilibria to the all-pay auction yield the same revenue.

The conclusion is that with ties for second, the expected sum of bids can be different from the value calculated in Theorem 4. Hence, two-ness is an assumption rather than a property of heterogeneous valuation all pay contests: c.f. Magee. Brock, and Young (ibid.. p. 217) who take two-ness as a general property in the setting of a political context.

The final case to be covered is when $\mathbf{v}_{1}=\mathbf{v}_{\mathbf{2}}=\ldots=\mathbf{v}_{\mathrm{m}}>\mathbf{v}_{\mathrm{m}+1} \geq \ldots \geq$ v_{n} for $2 \leq \mathrm{m} \leq \mathrm{n}-1$. The analysis of this case is trivial, as it can be shown that players 1 through mplay an m-player equilibrium of the type outlined in Theorem 1, while players $m+1$ through n put all mass at 0 .

Contrary to what has been conjectured in the literature and used in applications. the n-person all-pay auction has an infinity of equilibria. We examined both the case of homogeneous and heterogeneous valuations, and in each case we explicitly derived the equilibrium strategies and the expected sum of bids. For the common values case with more than two players, there is a unique symmetric equilibrium, but a continuum of asymmetric equilibria. However, all of the equilibria are payoff and revenue equilvalent. With heterogeneous valuations, a single agent with the highest valuation, and more than one agent with the second highest valuation, there is a continuum of asymmetric equilibria. These equilibria are not revenue equivalent.

Our results appear important since, in light of the rent-seeking and tournament literature, which examine games with a structure isomorphic to the all pay auction, one is tempted to take twoness as a general property of a contest. Our results warn against this practice, not only because larger numbers of players may actively participate in the bidding process, but because the number of active bidders may affect revenues.

Finally, our finding of a continuum of equilibria has important ramifications for applications of the model. As in other contexts, the multiplicity is troublesome. It is not clear how rational players should play the game, let alone how real-life players do play the game. An experimental investigation of the model remains a task for future research.

REFERENCES

Baye. M.R., D. Kovenock, and C.G. de Vries. "It Takes Two to Tango: Equilibria in a Model of Sales, Working Paper 89-20. Texas A8M University, 1989a.

Baye, M.R., D. Kovenock, and C.G. de Vries, "The Economics of AllPay, Winner-Take-All, Contests", Working Paper 89-21, Texas A\&M University, 1989b.

Hillman, A.L., The Political Economy of Protectionism, (Harwood: New York), 1988.

Hillman, A.L. and J.G. Riley, "Political Contestable Rents and Transfers", Mimeo, World Bank, 1987.

Hillman, A.L. and J.G. Riley, "Politically contestable Rents and Transfers, Economics and Politics, 1989, 17-39.

Hillman, A.L. and D. Samet. "Dissipation of contestable rents by small numbers of contenders". Public Choice, 1987, 63-82.

Moulin, H., Game Theory for the Social Sciences. 2nd. ed., 1986a.
Moulin, H., Eighty Nine Excercises with Solutions from Game Theory for the Social Sciences, 2nd. ed., 1986b.

Magee, S.P., W.A. Brock, and L. Young, Black hole tariffs and endogenous policy theory, political economy in general equilibrium, (Cambridge University Press: Cambridge). 1989.

Nalebuff, B.J. and J.E. Stiglitz, "Prizes and Incentives: Towards a General Theory of Compensation and Competition", Bell Journal of Economics, 1982, 21-43.

Rogerson. W. "The Social Costs of Monopoly and Regulation: A Game Theoretic Analysis", Bell Journal of Economics, 1982. pp. 391-401.

Snyder. J.M., "Election goals and the allocation of Campaign resources". Econometrica, 1989, 637-660.

Varian, H., "A Model of Sales", American Economic Review, 1980, 651659.

Weber. R.J., "Auctions and Competitive Bidding", in H.P. Young, ed., Fair Allocation. (American Mathematical Society), 1985, 143-170.
(For previous papers please consult previous discussion papers.)

No.	Author(s)	Title
8932	E. van Damme, R. Selten and E. Winter	Alternating Bid Bargaining with a Smallest Money Unit
8933	H. Carlsson and E. van Damme	Global Payoff Uncertainty and Risk Dominance
8934	H. Huizinga	National Tax Policies towards ProductInnovating Multinational Enterprises
8935	C. Dang and D. Talman	A New Triangulation of the Unit Simplex for Computing Economic Equilibria
8936	Th. Nijman and M. Verbeek	The Nonresponse Bias in the Analysis of the Determinants of Total Annual Expenditures of Households Based on Panel Data
8937	A.P. Barten	The Estimation of Mixed Demand Systems
8938	G. Marini	Monetary Shocks and the Nominal Interest Rate
8939	W. Güth and E. van Damme	Equilibrium Selection in the Spence Signaling Game
8940	G. Marini and P. Scaramozzino	Monopolistic Competition, Expected Inflation and Contract Length
8941	J.K. Dagsvik	The Generalized Extreme Value Random Utility Model for Continuous Choice
8942	M.F.J. Steel	Weak Exogenity in Misspecified Sequential Models
8943	A. Roell	Dual Capacity Trading and the Quality of the Market
8944	C. Hsiao	Identification and Estimation of Dichotomous Latent Variables Models Using Panel Data
8945	R.P. Gilles	Equilibrium in a Pure Exchange Economy with an Arbitrary Communication Structure
8946	W.B. MacLeod and J.M. Malcomson	Efficient Specific Investments, Incomplete Contracts, and the Role of Market Alternatives
8947	A. van Soest and A. Kapteyn	The Impact of Minimum Wage Regulations on Employment and the Wage Rate Distribution
8948	P. Kooreman and B. Melenberg	Maximum Score Estimation in the Ordered Response Model

No.	Author(s)	Title
8949	C. Dang	The D_{3}-Triangulation for Simplicial Deformation Algorithms for Computing Solutions of Nonlinear Equations
8950	M. Cripps	Dealer Behaviour and Price Volatility in Asset Markets
8951	T. Wansbeek and A. Kapteyn	Simple Estimators for Dynamic Panel Data Models with Errors in Variables
8952	Y. Dai, G. van der Laan, D. Talman and Y. Yamamoto	A Simplicial Algorithm for the Nonlinear Stationary Point Problem on an Unbounded Polyhedron
8953	F. van der Ploeg	Risk Aversion, Intertemporal Substitution and Consumption: The CARA-LQ Problem
8954	A. Kapteyn, S. van de Geer, H. van de Stadt and T. Wansbeek	Interdependent Preferences: An Econometric Analysis
8955	L. Zou	Ownership Structure and Efficiency: An Incentive Mechanism Approach
8956	P.Kooreman and A. Kapteyn	On the Empirical Implementation of Some Game Theoretic Models of Household Labor Supply
8957	E. van Damme	Signaling and Forward Induction in a Market Entry Context
9001	A. van Soest, P. Kooreman and A. Kapteyn	Coherency and Regularity of Demand Systems with Equality and Inequality Constraints
9002	J.R. Magnus and B. Pesaran	Forecasting, Misspecification and Unit Roots: The Case of $\operatorname{AR}(1)$ Versus $\operatorname{ARMA}(1,1)$
9003	J. Driffill and C. Schultz	Wage Setting and Stabilization Policy in a Game with Renegotiation
9004	M. McAleer, M.H. Pesaran and A. Bera	Alternative Approaches to Testing Non-Nested Models with Autocorrelated Disturbances: An Application to Models of U.S. Unemployment
9005	Th. ten Raa and M.F.J. Steel	A Stochastic Analysis of an Input-Output Model: Comment
9006	M. McAleer and C.R. McKenzie	Keynesian and New Classical Models of Unemployment Revisited
9007	J. Osiewalski and M.F.J. Steel	Semi-Conjugate Prior Densities in Multivariate t Regression Models

No. Author(s)
9007 J. Osiewalski and M.F.J. Steel

9008

9009
G.W. Imbens

9010
P. Deschamps

9011 W. Guth and
E. van Damme

9012 A. Horsley and
A. Wrobel

9013 A. Horsley and
A. Wrobel

9014 A. Horsley and
A. Wrobel

9015 A. van den Elzen,
G. van der Laan and
D. Talman

9016 P. Deschamps

9017 B.J. Christensen and N.M. Kiefer

9018 M. Verbeek and Th. Nijman

9019 J.R. Magnus and B. Pesaran

9020

9021
A. Robson
J.R. Magnus and B. Pesaran

Title
Semi-Conjugate Prior Densities in Multivariate t Regression Models

Duration Models with Time-Varying Coefficients

An Efficient Method of Moments Estimator for Discrete Choice Models with Choice-Based Sampling

Expectations and Intertemporal Separability in an Empirical Model of Consumption and Investment under Uncertainty

Gorby Games - A Game Theoretic Analysis of Disarmament Campaigns and the Defense Efficiency-Hypothesis

The Existence of an Equilibrium Density for Marginal Cost Prices, and the Solution to the Shifting-Peak Problem

The Closedness of the Free-Disposal Hull of a Production Set

The Continuity of the Equilibrium Price Density: The Case of Symmetric Joint Costs, and a Solution to the Shifting-Pattern Problem

An Adjustment Process for an Exchange Economy with Linear Production Technologies

On Fractional Demand Systems and Budget Share Positivity

The Exact Likelihood Function for an Empirical Job Search Model

Testing for Selectivity Bias in Panel Data Models

Evaluation of Moments of Ratios of Quadratic Forms in Normal Variables and Related Statistics

Status, the Distribution of Wealth, Social and Private Attitudes to Risk

Evaluation of Moments of Quadratic Forms in Normal Variables

No.	Author(s)	Title
9022	K. Kamiya and D. Talman	Linear Stationary Point Problems
9023	W. Emons	Good Times, Bad Times, and Vertical Upstream Integration
9024	C. Dang	The D_{2}-Triangulation for Simplicial Homotopy Algorithms for Computing Solutions of Nonlinear Equations
9025	K. Kamiya and D. Talman	Variable Dimension Simplicial Algorithm for Balanced Games
9026	P. Skott	Efficiency Wages, Mark-Up Pricing and Effective Demand
9027	C. Dang and D. Talman	The D_{1}-Triangulation in Simplicial Variable Dimension Algorithms for Computing Solutions of Nonlinear Equations
9028	J. Bai, A.J. Jakeman and M. McAleer	Discrimination Between Nested Two- and ThreeParameter Distributions: An Application to Models of Air Pollution
9029	Th. van de Klundert	Crowding out and the Weal th of Nations
9030	Th. van de Klundert and R. Gradus	Optimal Government Debt under Distortionary Taxation
9031	A. Weber	The Credibility of Monetary Target Announcements: An Empirical Evaluation
9032	J. Osiewalski and M. Steel	Robust Bayesian Inference in Elliptical Regression Models
9033	C. R. Wichers	The Linear-Algebraic Structure of Least Squares
9034	C. de Vries	On the Relation between GARCH and Stable Processes
9035	M.R. Baye, D.W. Jansen and Q. Li	Aggregation and the "Random Objective" Justification for Disturbances in Complete Demand Systems
9036	J. Driffill	The Term Structure of Interest Rates: Structural Stability and Macroeconomic Policy Changes in the UK
9037	F. van der Ploeg	Budgetary Aspects of Economic and Monetary Integration in Europe

No.	Author(s)	Title
9038	A. Robson	Existence of Nash Equilibrium in Mixed Strategies for Games where Payoffs Need not Be Continuous in Pure Strategies
9039	A. Robson	An "Informationally Robust Equilibrium" for Two-Person Nonzero-Sum Games
9040	M.R. Baye, G. Tian and J. Zhou	The Existence of Pure-Strategy Nash Equilibrium in Games with Payoffs that are not Quasiconcave
9041	M. Burnovsky and I. Zang	"Costless" Indirect Regulation of Monopolies with Substantial Entry Cost
9042	P.J. Deschamps	Joint Tests for Regularity and Autocorrelation in Allocation Systems
9043	S. Chib, J. Osiewalski and M. Steel	Posterior Inference on the Degrees of Freedom Parameter in Multivariate-t Regression Models
9044	H.A. Keuzenkamp	The Probability Approach in Economic Methodology: On the Relation between Haavelmo's Legacy and the Methodology of Economics
9045	I.M. Bomze and E.E.C. van Damme	A Dynamical Characterization of Evolutionarily Stable States
9046	E. van Damme	On Dominance Solvable Games and Equilibrium Selection Theories
9047	J. Driffill	Changes in Regime and the Term Structure: A Note
9048	A.J.J. Talman	General Equilibrium Programming
9049	H.A. Keuzenkamp and F. van der Ploeg	Saving, Investment, Government Finance and the Current Account: The Dutch Experience
9050	C. Dang and A.J.J. Talman	The D_{1}-Triangulation in Simplicial Variable Dimension Algorithms on the Unit Simplex for Computing Fixed Points
9051	M. Baye, D. Kovenock and C. de Vries	The All-Pay Auction with Complete Information

P.O. BOX 90153. 5000 LE TILBURG. THE NETHFRLANDS Bibliotheek K. U. Brabant

17000011175768

[^0]: ${ }^{1}$ More precisely, if the players can be ordered in such a way that $v_{1} \geq v_{2}>v_{3} \geq \ldots \geq v_{n}$, where v_{i} is the valuation of player i.

[^1]: 2 We could have $b_{i}>v$, in which case player i places all mass at 0 .

[^2]: 3 The derivation is lengthy but straightforward, and analogous to the case $h=n$ as presented in Baye. Kovenock and De Vries [1989b].

