28 research outputs found

    Molecular Evolution of Phosphoprotein Phosphatases in Drosophila

    Get PDF
    Phosphoprotein phosphatases (PPP), these ancient and important regulatory enzymes are present in all eukaryotic organisms. Based on the genome sequences of 12 Drosophila species we traced the evolution of the PPP catalytic subunits and noted a substantial expansion of the gene family. We concluded that the 18–22 PPP genes of Drosophilidae were generated from a core set of 8 indispensable phosphatases that are present in most of the insects. Retropositons followed by tandem gene duplications extended the phosphatase repertoire, and sporadic gene losses contributed to the species specific variations in the PPP complement. During the course of these studies we identified 5, up till now uncharacterized phosphatase retrogenes: PpY+, PpD5+, PpD6+, Pp4+, and Pp6+ which are found only in some ancient Drosophila. We demonstrated that all of these new PPP genes exhibit a distinct male specific expression. In addition to the changes in gene numbers, the intron-exon structure and the chromosomal localization of several PPP genes was also altered during evolution. The G−C content of the coding regions decreased when a gene moved into the heterochromatic region of chromosome Y. Thus the PPP enzymes exemplify the various types of dynamic rearrangements that accompany the molecular evolution of a gene family in Drosophilidae

    Platform session

    Get PDF

    Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants

    Get PDF
    RNA silencing is one of the main defense mechanisms employed by plants to fight viruses. In change, viruses have evolved silencing suppressor proteins to neutralize antiviral silencing. Since the endogenous and antiviral functions of RNA silencing pathway rely on common components, it was suggested that viral suppressors interfere with endogenous silencing pathway contributing to viral symptom development. In this work, we aimed to understand the effects of the tombusviral p19 suppressor on endogenous and antiviral silencing during genuine virus infection. We showed that ectopically expressed p19 sequesters endogenous small RNAs (sRNAs) in the absence, but not in the presence of virus infection. Our presented data question the generalized model in which the sequestration of endogenous sRNAs by the viral suppressor contributes to the viral symptom development. We further showed that p19 preferentially binds the perfectly paired ds-viral small interfering RNAs (vsiRNAs) but does not select based on their sequence or the type of the 5’ nucleotide. Finally, co-immunoprecipitation of sRNAs with AGO1 or AGO2 from virus-infected plants revealed that p19 specifically impairs vsiRNA loading into AGO1 but not AGO2. Our findings, coupled with the fact that p19-expressing wild type Cymbidium ringspot virus (CymRSV) overcomes the Nicotiana benthamiana silencing based defense killing the host, suggest that AGO1 is the main effector of antiviral silencing in this host-virus combination

    Regulation of High-Temperature Stress Response by Small RNAs

    Get PDF
    Temperature extremes constitute one of the most common environmental stresses that adversely affect the growth and development of plants. Transcriptional regulation of temperature stress responses, particularly involving protein-coding gene networks, has been intensively studied in recent years. High-throughput sequencing technologies enabled the detection of a great number of small RNAs that have been found to change during and following temperature stress. The precise molecular action of some of these has been elucidated in detail. In the present chapter, we summarize the current understanding of small RNA-mediated modulation of high- temperature stress-regulatory pathways including basal stress responses, acclimation, and thermo-memory. We gather evidence that suggests that small RNA network changes, involving multiple upregulated and downregulated small RNAs, balance the trade-off between growth/development and stress responses, in order to ensure successful adaptation. We highlight specific characteristics of small RNA-based tem- perature stress regulation in crop plants. Finally, we explore the perspectives of the use of small RNAs in breeding to improve stress tolerance, which may be relevant for agriculture in the near future

    Layer-specific activity of tissue non-specific alkaline phosphatase in the human neocortex

    No full text
    The ectoenzyme tissue non-specific alkaline phosphatase (TNAP) is mostly known for its role in bone mineralization. However, in the severe form of hypophosphatasia, TNAP deficiency also results in epileptic seizures, suggesting a role of this enzyme in brain functions. Accordingly, TNAP activity was shown in the neuropil of the cerebral cortex in diverse mammalian species. However in spite of its clinical significance, the neuronal localization of TNAP has not been investigated in the human brain. By using enzyme histochemistry, we found an unprecedented pattern of TNAP activity appearing as an uninterrupted layer across diverse occipital-, frontal- and temporal lobe areas of the human cerebral cortex. This marked TNAP-active band was localized infragranulary in layer 5 as defined by quantitative comparisons on parallel sections stained by various techniques to reveal the laminar pattern. On the contrary, TNAP activity was localized in layer 4 of the primary visual and somatosensory cortices, which is consistent with earlier observations on other species. This result suggests that the expression of TNAP in the thalamo-recipient granular layer is an evolutionary conserved feature of the sensory cortex. The observations of the present study also suggest that diverse neurocognitive functions share a common cerebral cortical mechanism depending on TNAP activity in layer 5. In summary, the present data point on the distinctive role of layer 5 in cortical computation and neurological disorders caused by TNAP dysfunctions in the human brain
    corecore