67 research outputs found

    Insights into the impacts of rural honey hunting in Zambia

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordData Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request

    Big sugar in southern Africa : rural development and the perverted potential of sugar/ethanol exports

    Get PDF
    This paper asks how investment in large-scale sugar cane production has contributed, and will contribute, to rural development in southern Africa. Taking a case study of the South African company Illovo in Zambia, the argument is made that the potential for greater tax revenue, domestic competition, access to resources and wealth distribution from sugar/ethanol production have all been perverted and with relatively little payoff in wage labour opportunities in return. If the benefits of agro-exports cannot be so easily assumed, then the prospective 'balance sheet' of biofuels needs to be re-examined. In this light, the paper advocates smaller-scale agrarian initiatives

    The roles and values of wild foods in agricultural systems

    Get PDF
    Almost every ecosystem has been amended so that plants and animals can be used as food, fibre, fodder, medicines, traps and weapons. Historically, wild plants and animals were sole dietary components for hunter–gatherer and forager cultures. Today, they remain key to many agricultural communities. The mean use of wild foods by agricultural and forager communities in 22 countries of Asia and Africa (36 studies) is 90–100 species per location. Aggregate country estimates can reach 300–800 species (e.g. India, Ethiopia, Kenya). The mean use of wild species is 120 per community for indigenous communities in both industrialized and developing countries. Many of these wild foods are actively managed, suggesting there is a false dichotomy around ideas of the agricultural and the wild: hunter–gatherers and foragers farm and manage their environments, and cultivators use many wild plants and animals. Yet, provision of and access to these sources of food may be declining as natural habitats come under increasing pressure from development, conservation-exclusions and agricultural expansion. Despite their value, wild foods are excluded from official statistics on economic values of natural resources. It is clear that wild plants and animals continue to form a significant proportion of the global food basket, and while a variety of social and ecological drivers are acting to reduce wild food use, their importance may be set to grow as pressures on agricultural productivity increase.</jats:p

    A multi-stakeholder situation assessment of COVID-19 disease preparedness and mitigation measures in a large prison complex in Malawi.

    Get PDF
    Purpose: Prisons in the sub-Saharan African region face unprecedented challenges during the COVID19 pandemic. In Malawi, the first prison system case of COVID-19 was notified in July 2020. While, prison settings were included in the 2nd domestic COVID-19 response plan within the Law Enforcement cluster (National COVID-19 preparedness and response plan, July-December 2020), they were initially not included in the K157 billion (USD 210 million) COVID-19 fund. Design/methodology/approach: A multi-method situation assessment of the COVID-19 response and human rights assurance of prisoners and staff was conducted in a large prison complex in Malawi. Qualitative research underpinned by the Empirical Phenomenological Psychological (EPP) framework consisted of interviews with key informants such as prison health personnel, senior prison staff, penal and judicial policymakers, government and civil society organisations (n = 14) and focus group discussions with consenting male (n = 48) and female prisoners (n = 48), and prison wardens (n = 24). Prison site visits were supported by detailed observations based on the WHO Checklist for COVID-19 in prisons (n = 9). Data were collected and analysed thematically using the EPP stepwise approach and triangulated based on Bronfenbrenner’s model conceptualising COVID-19 as a multi-level event disrupting the prison eco-system. Findings: The results are presented as MICRO-MESO level individual and community experiences of incarceration during COVID-19 spanning several themes: Awareness raising and knowledge of COVID-19 in prisons; Prison congestion and the impossibility of social distancing; Lack of adequate ventilation, hygiene and sanitation and Provisions and correct use of personal protective equipment (PPE); MESO-MACRO level interplay between the prison community of prisoners and staff and judicial policy impacts; Medical system COVID-19 response, infrastructure and access to healthcare; COVID19 detection and quarantine measures and Prisoner access to the outside world. Originality: This unique situation assessment of the Malawian prison system response to mitigate COVID-19 illustrates the dynamics at the micro-level whereby prisoners rely on the State and have restricted agency in protecting themselves from disease. This is due to severe structural inadequacies based on low resource allocation to prisons leading to a compromised ability to prevent and treat disease; an infirm and congested infrastructure and bottlenecks in the judicial system fueling a continued influx of remand detainees leading to high over capacity. Multi-pronged interventions involving key stakeholders, with prison management and line Ministry as coordinators are warranted to optimise COVID-19 interventions and future disease outbreaks in the Malawian prison system

    Exploring Cell Tropism as a Possible Contributor to Influenza Infection Severity

    Get PDF
    Several mechanisms have been proposed to account for the marked increase in severity of human infections with avian compared to human influenza strains, including increased cytokine expression, poor immune response, and differences in target cell receptor affinity. Here, the potential effect of target cell tropism on disease severity is studied using a mathematical model for in-host influenza viral infection in a cell population consisting of two different cell types. The two cell types differ only in their susceptibility to infection and rate of virus production. We show the existence of a parameter regime which is characterized by high viral loads sustained long after the onset of infection. This finding suggests that differences in cell tropism between influenza strains could be sufficient to cause significant differences in viral titer profiles, similar to those observed in infections with certain strains of influenza A virus. The two target cell mathematical model offers good agreement with experimental data from severe influenza infections, as does the usual, single target cell model albeit with biologically unrealistic parameters. Both models predict that while neuraminidase inhibitors and adamantanes are only effective when administered early to treat an uncomplicated seasonal infection, they can be effective against more severe influenza infections even when administered late

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Targeting the ERG oncogene with splice-switching oligonucleotides as a novel therapeutic strategy in prostate cancer

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordBackground The ERG oncogene, a member of the ETS family of transcription factor encoding genes, is a genetic driver of prostate cancer. It is activated through a fusion with the androgen-responsive TMPRSS2 promoter in 50% of cases. There is therefore significant interest in developing novel therapeutic agents that target ERG. We have taken an antisense approach and designed morpholino-based oligonucleotides that target ERG by inducing skipping of its constitutive exon 4. Methods We designed antisense morpholino oligonucleotides (splice-switching oligonucleotides, SSOs) that target both the 5′ and 3′ splice sites of ERG’s exon 4. We tested their efficacy in terms of inducing exon 4 skipping in two ERG-positive cell lines, VCaP prostate cancer cells and MG63 osteosarcoma cells. We measured their effect on cell proliferation, migration and apoptosis. We also tested their effect on xenograft tumour growth in mice and on ERG protein expression in a human prostate cancer radical prostatectomy sample ex vivo. Results In VCaP cells, both SSOs were effective at inducing exon 4 skipping, which resulted in a reduction of overall ERG protein levels up to 96 h following a single transfection. SSO-induced ERG reduction decreased cell proliferation, cell migration and significantly increased apoptosis. We observed a concomitant reduction in protein levels for cyclin D1, c-Myc and the Wnt signalling pathway member β-catenin as well as a marker of activated Wnt signalling, p-LRP6. We tested the 3′ splice site SSO in MG63 xenografts in mice and observed a reduction in tumour growth. We also demonstrated that the 3′ splice site SSO caused a reduction in ERG expression in a patient-derived prostate tumour tissue cultured ex vivo. Conclusions We have successfully designed and tested morpholino-based SSOs that cause a marked reduction in ERG expression, resulting in decreased cell proliferation, a reduced migratory phenotype and increased apoptosis. Our initial tests on mouse xenografts and a human prostate cancer radical prostatectomy specimen indicate that SSOs can be effective for oncogene targeting in vivo. As such, this study encourages further in vivo therapeutic studies using SSOs targeting the ERG oncogene.Prostate Cancer U
    corecore