1,451 research outputs found

    Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach

    Get PDF
    Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics

    Tracking a Medically Important Spider: Climate Change, Ecological Niche Modeling, and the Brown Recluse (Loxosceles reclusa)

    Get PDF
    Most spiders use venom to paralyze their prey and are commonly feared for their potential to cause injury to humans. In North America, one species in particular, Loxosceles reclusa (brown recluse spider, Sicariidae), causes the majority of necrotic wounds induced by the Araneae. However, its distributional limitations are poorly understood and, as a result, medical professionals routinely misdiagnose brown recluse bites outside endemic areas, confusing putative spider bites for other serious conditions. To address the issue of brown recluse distribution, we employ ecological niche modeling to investigate the present and future distributional potential of this species. We delineate range boundaries and demonstrate that under future climate change scenarios, the spider's distribution may expand northward, invading previously unaffected regions of the USA. At present, the spider's range is centered in the USA, from Kansas east to Kentucky and from southern Iowa south to Louisiana. Newly influenced areas may include parts of Nebraska, Minnesota, Wisconsin, Michigan, South Dakota, Ohio, and Pennsylvania. These results illustrate a potential negative consequence of climate change on humans and will aid medical professionals in proper bite identification/treatment, potentially reducing bite misdiagnoses

    Ecological approaches in veterinary epidemiology: mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery

    Get PDF
    Rabies remains a disease of significant public health concern. In the Americas, bats are an important source of rabies for pets, livestock, and humans. For effective rabies control and prevention, identifying potential areas for disease occurrence is critical to guide future research, inform public health policies, and design interventions. To anticipate zoonotic infectious diseases distribution at coarse scale, veterinary epidemiology needs to advance via exploring current geographic ecology tools and data using a biological approach. We analyzed bat-borne rabies reports in Chile from 2002 to 2012 to establish associations between rabies occurrence and environmental factors to generate an ecological niche model (ENM). The main rabies reservoir in Chile is the bat species Tadarida brasiliensis; we mapped 726 occurrences of rabies virus variant AgV4 in this bat species and integrated them with contemporary Normalized Difference Vegetation Index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The correct prediction of areas with rabies in bats and the reliable anticipation of human rabies in our study illustrate the usefulness of ENM for mapping rabies and other zoonotic pathogens. Additionally, we highlight critical issues with selection of environmental variables, methods for model validation, and consideration of sampling bias. Indeed, models with weak or incorrect validation approaches should be interpreted with caution. In conclusion, ecological niche modeling applications for mapping disease risk at coarse geographic scales have a promising future, especially with refinement and enrichment of models with additional information, such as night-time light data, which increased substantially the model’s ability to anticipate human rabies

    Species' geographic distributions through time: Playing catchup with changing climates

    Get PDF
    This is the author's accepted manuscript.Species’ ranges are often treated as a rather fixed characteristic, rather than a fluid, ever-changing manifestation of their ecological requirements and dispersal abilities. Paleontologists generally have had a more flexible point of view on this issue than neontologists, but each perspective can improve by appreciating the other. Here, we provide an overview of paleontological and neontological perspectives on species’ geographic distributions, focusing on what can be learned about historical variations in distributions. The cross-disciplinary view, we hope, offers some novel perspectives on species-level biogeography

    SHIELD: Neutral Gas Kinematics and Dynamics

    Get PDF
    We present kinematic analyses of the 12 galaxies in the "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD). We use multi-configuration interferometric observations of the HI 21cm emission line from the Karl G. Jansky Very Large Array (VLA) to produce image cubes at a variety of spatial and spectral resolutions. Both two- and three-dimensional fitting techniques are employed in an attempt to derive inclination-corrected rotation curves for each galaxy. In most cases, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make spatially resolved position-velocity cuts, corrected for inclination using the stellar components, to estimate the circular rotation velocities. We find circular velocities <30 km/s for the entire survey population. Baryonic masses are calculated using single-dish HI fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical masses estimated from the position-velocity analysis. The SHIELD galaxies are then placed on the baryonic Tully-Fisher relation. There exists an empirical threshold rotational velocity <15 km/s, below which current observations cannot differentiate coherent rotation from pressure support. The SHIELD galaxies are representative of an important population of galaxies whose properties cannot be described by current models of rotationally-dominated galaxy dynamics

    Assessing Historical Fish Community Composition Using Surveys, Historical Collection Data, and Species Distribution Models

    Get PDF
    Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of freshwater biotic communities

    SHIELD: Comparing Gas and Star Formation in Low Mass Galaxies

    Get PDF
    We analyze the relationships between atomic, neutral hydrogen (HI) and star formation (SF) in the 12 low-mass SHIELD galaxies. We compare high spectral (~0.82 km/s/channel) and spatial resolution (physical resolutions of 170 pc - 700 pc) HI imaging from the VLA with H\alpha and far-ultraviolet imaging. We quantify the degree of co-spatiality between star forming regions and regions of high HI column densities. We calculate the global star formation efficiencies (SFE, ΣSFR\Sigma_{\rm SFR} / ΣHI\Sigma_{\rm HI}), and examine the relationships among the SFE and HI mass, HI column density, and star formation rate (SFR). The systems are consuming their cold neutral gas on timescales of order a few Gyr. While we derive an index for the Kennicutt-Schmidt relation of N ~ 0.68 ±\pm 0.04 for the SHIELD sample as a whole, the values of N vary considerably from system to system. By supplementing SHIELD results with those from other surveys, we find that HI mass and UV-based SFR are strongly correlated over five orders of magnitude. Identification of patterns within the SHIELD sample allows us to bin the galaxies into three general categories: 1) mainly co-spatial HI and SF regions, found in systems with highest peak HI column densities and highest total HI masses, 2) moderately correlated HI and SF regions, found in systems with moderate HI column densities, and 3) obvious offsets between HI and SF peaks, found in systems with the lowest total HI masses. SF in these galaxies is dominated by stochasticity and random fluctuations in their ISM

    The Postpartum Specific Anxiety Scale: development and preliminary validation

    Get PDF
    Perinatal symptoms of anxiety are increasingly recognised due to their high prevalence and impact. Studies using pregnancy-specific anxiety measures have found that they may predict perinatal outcomes more effectively than general measures. However, no such measure exists to assess anxieties specific to the postpartum. This study aimed to develop and validate a measure (Postpartum Specific Anxiety Scale; PSAS) that accurately represents the specific anxieties faced by postpartum women, using a four-stage methodology: (1) 51 items were generated from interviews conducted with a group of 19 postpartum women at two time points, (2) the scale was reviewed and refined by a diverse expert panel, (3) an online pilot study (n = 146) was conducted to assess comprehensibility and acceptability and (4) an online sample of 1282 mothers of infants up to 6 months old completed the PSAS against a battery of convergent measures. A subsample (n = 262) repeated the PSAS 2 weeks later. The PSAS possessed good face and content validity and was comprehensible and acceptable to postpartum women. PSAS scores were significantly correlated with other measures indicating good convergent validity. Principal component analyses (PCA) revealed a simple four-factor structure. Reliability of the overall scale and individual PSAS factors proved to be good to excellent. A preliminary receiver operating characteristic (ROC) analysis also suggested that the PSAS may be a useful screening tool. The psychometric evidence suggests that the PSAS is an acceptable, valid, and reliable research tool to assess anxieties, which are specific to the postpartum period. Next steps in the iterative validation process are considered for both research and screening purposes
    corecore