51 research outputs found

    Dual origins of dairy cattle farming : evidence from a comprehensive survey of European Y-Chromosomal variation

    Get PDF
    Background - Diversity patterns of livestock species are informative to the history of agriculture and indicate uniqueness of breeds as relevant for conservation. So far, most studies on cattle have focused on mitochondrial and autosomal DNA variation. Previous studies of Y-chromosomal variation, with limited breed panels, identified two Bos taurus (taurine) haplogroups (Y1 and Y2; both composed of several haplotypes) and one Bos indicus (indicine/zebu) haplogroup (Y3), as well as a strong phylogeographic structuring of paternal lineages. Methodology and Principal Findings - Haplogroup data were collected for 2087 animals from 138 breeds. For 111 breeds, these were resolved further by genotyping microsatellites INRA189 (10 alleles) and BM861 (2 alleles). European cattle carry exclusively taurine haplotypes, with the zebu Y-chromosomes having appreciable frequencies in Southwest Asian populations. Y1 is predominant in northern and north-western Europe, but is also observed in several Iberian breeds, as well as in Southwest Asia. A single Y1 haplotype is predominant in north-central Europe and a single Y2 haplotype in central Europe. In contrast, we found both Y1 and Y2 haplotypes in Britain, the Nordic region and Russia, with the highest Y-chromosomal diversity seen in the Iberian Peninsula. Conclusions - We propose that the homogeneous Y1 and Y2 regions reflect founder effects associated with the development and expansion of two groups of dairy cattle, the pied or red breeds from the North Sea and Baltic coasts and the spotted, yellow or brown breeds from Switzerland, respectively. The present Y1-Y2 contrast in central Europe coincides with historic, linguistic, religious and cultural boundaries

    Analysis of conservation priorities of Iberoamerican cattle based on autosomal microsatellite markers

    Get PDF
    Articles in International JournalsBackground: Determining the value of livestock breeds is essential to define conservation priorities, manage genetic diversity and allocate funds. Within- and between-breed genetic diversity need to be assessed to preserve the highest intra-specific variability. Information on genetic diversity and risk status is still lacking for many Creole cattle breeds from the Americas, despite their distinct evolutionary trajectories and adaptation to extreme environmental conditions. Methods: A comprehensive genetic analysis of 67 Iberoamerican cattle breeds was carried out with 19 FAOrecommended microsatellites to assess conservation priorities. Contributions to global diversity were investigated using alternative methods, with different weights given to the within- and between-breed components of genetic diversity. Information on Iberoamerican plus 15 worldwide cattle breeds was used to investigate the contribution of geographical breed groups to global genetic diversity. Results: Overall, Creole cattle breeds showed a high level of genetic diversity with the highest level found in breeds admixed with zebu cattle, which were clearly differentiated from all other breeds. Within-breed kinships revealed seven highly inbred Creole breeds for which measures are needed to avoid further genetic erosion. However, if contribution to heterozygosity was the only criterion considered, some of these breeds had the lowest priority for conservation decisions. The Weitzman approach prioritized highly differentiated breeds, such as Guabalá, Romosinuano, Cr. Patagonico, Siboney and Caracú, while kinship-based methods prioritized mainly zebu-related breeds. With the combined approaches, breed ranking depended on the weights given to the within- and between-breed components of diversity. Overall, the Creole groups of breeds were generally assigned a higher priority for conservation than the European groups of breeds. Conclusions: Conservation priorities differed significantly according to the weight given to within- and betweenbreed genetic diversity. Thus, when establishing conservation programs, it is necessary to also take into account other features. Creole cattle and local isolated breeds retain a high level of genetic diversity. The development of sustainable breeding and crossbreeding programs for Creole breeds, and the added value resulting from their products should be taken into consideration to ensure their long-term survival

    Multimorbidity and survival for patients with acute myocardial infarction in England and Wales: Latent class analysis of a nationwide population-based cohort

    Get PDF
    Background: There is limited knowledge of the scale and impact of multimorbidity for patients who have had an acute myocardial infarction (AMI). Therefore, this study aimed to determine the extent to which multimorbidity is associated with long-term survival following AMI. Methods and findings: This national observational study included 693,388 patients (median age 70.7 years, 452,896 [65.5%] male) from the Myocardial Ischaemia National Audit Project (England and Wales) who were admitted with AMI between 1 January 2003 and 30 June 2013. There were 412,809 (59.5%) patients with multimorbidity at the time of admission with AMI, i.e., having at least 1 of the following long-term health conditions: diabetes, chronic obstructive pulmonary disease or asthma, heart failure, renal failure, cerebrovascular disease, peripheral vascular disease, or hypertension. Those with heart failure, renal failure, or cerebrovascular disease had the worst outcomes (39.5 [95% CI 39.0–40.0], 38.2 [27.7–26.8], and 26.6 [25.2–26.4] deaths per 100 person-years, respectively). Latent class analysis revealed 3 multimorbidity phenotype clusters: (1) a high multimorbidity class, with concomitant heart failure, peripheral vascular disease, and hypertension, (2) a medium multimorbidity class, with peripheral vascular disease and hypertension, and (3) a low multimorbidity class. Patients in class 1 were less likely to receive pharmacological therapies compared with class 2 and 3 patients (including aspirin, 83.8% versus 87.3% and 87.2%, respectively; β-blockers, 74.0% versus 80.9% and 81.4%; and statins, 80.6% versus 85.9% and 85.2%). Flexible parametric survival modelling indicated that patients in class 1 and class 2 had a 2.4-fold (95% CI 2.3–2.5) and 1.5-fold (95% CI 1.4–1.5) increased risk of death and a loss in life expectancy of 2.89 and 1.52 years, respectively, compared with those in class 3 over the 8.4-year follow-up period. The study was limited to all-cause mortality due to the lack of available cause-specific mortality data. However, we isolated the disease-specific association with mortality by providing the loss in life expectancy following AMI according to multimorbidity phenotype cluster compared with the general age-, sex-, and year-matched population. Conclusions: Multimorbidity among patients with AMI was common, and conferred an accumulative increased risk of death. Three multimorbidity phenotype clusters that were significantly associated with loss in life expectancy were identified and should be a concomitant treatment target to improve cardiovascular outcomes

    Soil Science teaching principles

    No full text
    Soil Science is a unique discipline concerning a complex material that is part of many natural and utilitarian systems. As such, the teaching of Soil Science requires principles that reflect the nature of soil and the practices of soil scientists. Because no discipline-specific teaching principles could be found for Soil Science in the literature, an iterative approach was used to develop them, which involved input from students, academics, employers, graduates in the workplace, as well as published generic teaching principles. The synthesis of these perspectives was achieved via a series of cycles that first involved student feedback on Soil Science teaching from five Australian universities, combined with academic reflections on learning and teaching. The outcome of this activity was subject to perspectives provided by employers of soil scientists and practising soil scientists in the workplace. Quantitative and qualitative analyses of these sources and published generic teaching materials were blended into a set of 11 teaching principles of Soil Science that reflect the unique nature of soil and the outcomes required of graduates who have majored in Soil Science. © 2011.Damien J. Field, Anthony J. Koppi, Lorna E. Jarrett, Lynn K. Abbott, Stephen R. Cattle, Cameron D. Grant, Alex B. McBratney, Neal W. Menzies and Anthony J. Weatherleyhttp://www.journals.elsevier.com/geoderma

    SNP genotypes and sample information for 144 cattle from various primitive European cattle breeds

    No full text
    This file contains the information for 777,962 markers genotyped in 143 samples using the Illumina BovineHD BeadChip. The vcf file contains the aurochs genotypes, which corresponds to SNP positions in Illumina BovineHD Beadchip
    corecore