22 research outputs found

    The evolution of selfing from outcrossing ancestors in Brassicaceae: What have we learned from variation at the S-locus?

    No full text
    International audienceEvolutionary transitions between mating systems have occurred repetitively and independently in flowering plants. One of the most spectacular advances of the recent empirical literature in the field was the discovery of the underlying genetic machinery, which provides the opportunity to retrospectively document the scenario of the outcrossing to selfing transitions in a phylogenetic perspective. In this review, we explore the literature describing patterns of polymorphism and molecular evolution of the locus controlling self-incompatibility (S-locus) in selfing species of the Brassicaceae family in order to document the transition from outcrossing to selfing, a retrospective approach that we describe as the 'mating system genes approach'. The data point to strikingly contrasted scenarios of transition from outcrossing to selfing. We also perform original analyses of the fully sequenced genomes of four species showing self-compatibility, to compare the orthologous S-locus region with that of functional S-locus haplotypes. Phylogenetic analyses suggest that all species we investigated evolved independently towards loss of self-incompatibility, and in most cases almost intact sequences of either of the two S-locus genes suggest that these transitions occurred relatively recently. The S-locus region in Aethionema arabicum, representing the most basal lineage of Brassicaceae, showed unusual patterns so that our analysis could not determine whether self-incompatibility was lost secondarily, or evolved in the core Brassicaceae after the split with this basal lineage. Although the approach we detail can only be used when mating system genes have been identified in a clade, we suggest that its integration with phylogenetic and population genetic approaches should help determine the main routes of this predominant mating system shift in plants

    Poux_SystBiol_2006

    No full text
    Nucleotide concatenation alignment of 3 nuclear genes for 62 taxa

    Data from: Arrival and diversification of caviomorph rodents and platyrrhine primates in South America.

    No full text
    Platyrrhine primates and caviomorph rodents are clades of mammals that colonized South America during its period of isolation from the other continents, between 100 and 3 million years ago (Mya). Until now, no molecular study investigated the timing of the South American colonization by these two lineages with the same molecular data set. Using sequences from three nuclear genes (ADRA2B, vWF, and IRBP, both separate and combined) from 60 species, and eight fossil calibration constraints, we estimated the times of origin and diversification of platyrrhines and caviomorphs via a Bayesian relaxed molecular clock approach. To account for the possible effect of an accelerated rate of evolution of the IRBP gene along the branch leading to the anthropoids, we performed the datings with and without IRBP (3768 sites and 2469 sites, respectively). The time window for the colonization of South America by primates and by rodents is demarcated by the dates of origin (upper bound) and radiation (lower bound) of platyrrhines and caviomorphs. According to this approach, platyrrhine primates colonized South America between 37.0 +/- 3.0 Mya (or 38.9 +/- 4.0 Mya without IRBP) and 16.8 +/- 2.3 (or 20.1 +/- 3.3) Mya, and caviomorph rodents between 45.4 +/- 4.1 (or 43.7 +/- 4.8) Mya and 36.7 +/- 3.7 (or 35.8 +/- 4.3) Mya. Considering both the fossil record and these molecular datings, the favored scenarios are a trans-Atlantic migration of primates from Africa at the end of the Eocene or beginning of the Oligocene, and a colonization of South America by rodents during the Middle or Late Eocene. Based on our nuclear DNA data, we cannot rule out the possibility of a concomitant arrival of primates and rodents in South America. The caviomorphs radiated soon after their arrival, before the Oligocene glaciations, and these early caviomorph lineages persisted until the present. By contrast, few platyrrhine fossils are known in the Oligocene, and the present-day taxa are the result of a quite recent, Early Miocene diversification

    Chloroplastic and nuclear diversity of wild beets at a large geographical scale: Insights into the evolutionary history of the Beta section

    No full text
    International audienceHistorical demographic processes and mating systems are believed to be major factors in the shaping of the intraspecies genetic diversity of plants. Among Caryophyllales, the Beta section of the genus Beta, within the Amaranthaceae/Chenopodiaceae alliance , is an interesting study model with species and subspecies (Beta macrocarpa, Beta patula, Beta vulgaris maritima and B.v. adanensis) differing in geographical distribution and mating system. In addition, one of the species, B. macrocarpa, mainly diploid, varies in its level of ploidy with a tetraploid cytotype described in the Canary Islands and in Portugal. In this study, we analyzed the nucleotide diversity of chloroplastic and nuclear sequences on a representative sampling of species and subspecies of the Beta section (except B. patula). Our objectives were (1) to assess their genetic relationships through phylogenetic and multivariate analyses, (2) relate their genetic diversity to their mating system, and (3) reconsider the ploidy status and the origin of the Canarian Beta macrocarpa
    corecore