26 research outputs found

    Clostridium botulinum type C, D, C/D, and D/C: An update

    Get PDF
    Clostridium botulinum is the main causative agent of botulism, a neurological disease encountered in humans as well as animals. Nine types of botulinum neurotoxins (BoNTs) have been described so far. Amongst these “toxinotypes,” the A, the B and E are the most frequently encountered in humans while the C, D, C/D and D/C are mostly affecting domestic and wild birds as well as cattle. In France for instance, many cases and outbreaks are reported in these animal species every year. However, underestimation is very likely at least for avifauna species where the detection of dead animals can be challenging. Knowledge about BoNTs C, D, C/D, and D/C and the diseases they cause in animals and humans is still scarce and unclear. Specifically, the potential role of animal botulism outbreaks in cattle and poultry as a source of human illness needs to be further assessed. In this narrative review, we present the current knowledge about toxinotypes C, D, C/D, and D/C in cattle and poultry with, amongst various other aspects, their epidemiological cycles. We also discuss the zoonotic potential of these toxinotypes and some possible ways of risk mitigation. An adapted and effective management of botulism outbreaks in livestock also requires a better understanding of these less common and known toxinotypes

    The Workshop on Animal Botulism in Europe

    Get PDF
    A workshop on animal botulism was held in Uppsala, Sweden, in June 2012. Its purpose was to explore the current status of the disease in Europe by gathering the European experts in animal botulism and to raise awareness of the disease among veterinarians and others involved in biopreparedness. Animal botulism is underreported and underdiagnosed, but an increasing number of reports, as well as the information gathered from this workshop, show that it is an emerging problem in Europe. The workshop was divided into 4 sessions: animal botulism in Europe, the bacteria behind the disease, detection and diagnostics, and European collaboration and surveillance. An electronic survey was conducted before the workshop to identify the 3 most needed discussion points, which were: prevention, preparedness and outbreak response; detection and diagnostics; and European collaboration and surveillance. The main conclusions drawn from these discussions were that there is an urgent need to replace the mouse bioassay for botulinum toxin detection with an in vitro test and that there is a need for a European network to function as a reference laboratory, which could also organize a European supply of botulinum antitoxin and vaccines. The foundation of such a network was discussed, and the proposals are presented here along with the outcome of discussions and a summary of the workshop itself

    Animal Botulism Outcomes in the AniBioThreat Project

    Get PDF
    Botulism disease in both humans and animals is a worldwide concern. Botulinum neurotoxins produced by Clostridium botulinum and other Clostridium species are the most potent biological substances known and are responsible for flaccid paralysis leading to a high mortality rate. Clostridium botulinum and botulinum neurotoxins are considered potential weapons for bioterrorism and have been included in the Australia Group List of Biological Agents. In 2010 the European Commission (DG Justice, Freedom and Security) funded a 3-year project named AniBioThreat to improve the EU's capacity to counter animal bioterrorism threats. A detection portfolio with screening methods for botulism agents and incidents was needed to improve tracking and tracing of accidental and deliberate contamination of the feed and food chain with botulinum neurotoxins and other Clostridia. The complexity of this threat required acquiring new genetic information to better understand the diversity of these Clostridia and develop detection methods targeting both highly specific genetic markers of these Clostridia and the neurotoxins they are able to produce. Several European institutes participating in the AniBioThreat project collaborated on this program to achieve these objectives. Their scientific developments are discussed here

    Management of Animal Botulism Outbreaks: From Clinical Suspicion to Practical Countermeasures to Prevent or Minimize Outbreaks

    Get PDF
    Botulism is a severe neuroparalytic disease that affects humans, all warm-blooded animals, and some fishes. The disease is caused by exposure to toxins produced by Clostridium botulinum and other botulinum toxin–producing clostridia. Botulism in animals represents a severe environmental and economic concern because of its high mortality rate. Moreover, meat or other products from affected animals entering the food chain may result in a public health problem. To this end, early diagnosis is crucial to define and apply appropriate veterinary public health measures. Clinical diagnosis is based on clinical findings eliminating other causes of neuromuscular disorders and on the absence of internal lesions observed during postmortem examination. Since clinical signs alone are often insufficient to make a definitive diagnosis, laboratory confirmation is required. Botulinum antitoxin administration and supportive therapies are used to treat sick animals. Once the diagnosis has been made, euthanasia is frequently advisable. Vaccine administration is subject to health authorities' permission, and it is restricted to a small number of animal species. Several measures can be adopted to prevent or minimize outbreaks. In this article we outline all phases of management of animal botulism outbreaks occurring in wet wild birds, poultry, cattle, horses, and fur farm animals

    Exploration of the Diversity of Clustered Regularly Interspaced Short Palindromic Repeats-Cas Systems in Clostridium novyi sensu lato

    Get PDF
    International audienceClassified as the genospecies Clostridium novyi sensu lato and distributed into four lineages (I–IV), Clostridium botulinum (group III), Clostridium novyi , and Clostridium haemolyticum are clostridial pathogens that cause animal diseases. Clostridium novyi sensu lato contains a large mobilome consisting of plasmids and circular bacteriophages. Here, we explored clustered regularly interspaced short palindromic repeats (CRISPR) arrays and their associated proteins (Cas) to shed light on the link between evolution of CRISPR-Cas systems and the plasmid and phage composition in a study of 58 Clostridium novyi sensu lato genomes. In 55 of these genomes, types I-B (complete or partial), I-D, II-C, III-B, III-D, or V-U CRISPR-Cas systems were detected in chromosomes as well as in mobile genetic elements (MGEs). Type I-B predominated (67.2%) and was the only CRISPR type detected in the Ia, III, and IV genomic lineages. Putative type V-U CRISPR Cas14a genes were detected in two different cases: next to partial type-IB CRISPR loci on the phage encoding the botulinum neurotoxin (BoNT) in lineage Ia and in 12 lineage II genomes, as part of a putative integrative element related to a phage-inducible chromosomal island (PICI). In the putative PICI, Cas14a was associated with CRISPR arrays and restriction modification (RM) systems as part of an accessory locus. This is the first time a PICI containing such locus has been detected in C. botulinum . Mobilome composition and dynamics were also investigated based on the contents of the CRISPR arrays and the study of spacers. A large proportion of identified protospacers (20.2%) originated from Clostridium novyi sensu lato (p1_Cst, p4_BKT015925, p6_Cst, CWou-2020a, p1_BKT015925, and p2_BKT015925), confirming active exchanges within this genospecies and the key importance of specific MGEs in Clostridium novyi sensu lato

    Detection, differentiation, and identification of botulinum neurotoxin serotypes C, CD, D, and DC by highly specific immunoassays and mass spectrometry

    Get PDF
    Botulinum neurotoxin (BoNT) serotypes C and D and their mosaic variants CD and DC cause severe cases of botulism in animal husbandry and wildlife. Epidemiological data on the exact serotype or toxin variant causing outbreaks are rarely available, mainly because of their high sequence identity and the lack of fast and specific screening tools to detect and differentiate the four similar toxins. To fill this gap, we developed four highly specific sandwich enzyme-linked immunosorbent assays (ELISAs) able to detect and differentiate botulinum neurotoxins type BoNT/C, D, CD, and DC based on four distinct combinations of specific monoclonal antibodies targeting both conserved and divergent subdomains of the four toxins. Here, highly sensitive detection with detection limits between 2 and 24 pg mL−1 was achieved. The ELISAs were extensively validated and results were compared with data obtained by quantitative real-time PCR using a panel of Clostridium botulinum strains, real sample materials from veterinary botulism outbreaks, and non-BoNT-producing Clostridia. Additionally, in order to verify the results obtained by ELISA screening, the new monoclonal antibodies were used for BoNT enrichment and subsequent detection (i) on a functional level by endopeptidase mass spectrometry (Endopep-MS) assays and (ii) on a protein sequence level by LC-MS/MS spectrometry. Based on all technical information gathered in the validation study, the four differentiating ELISAs turned out to be highly reliable screening tools for the rapid analysis of veterinary botulism cases and should aid future field investigations of botulism outbreaks and the acquisition of epidemiological data

    Clostridium botulinum type C, D, C/D, and D/C: An update

    No full text
    We are grateful to the ANSES expert committee panel in charge of assessing animal health and animal welfare risk, and to the working group “Botulism,” including the authors as well as Catherine Belloc, StĂ©phane Bertagnoli, Alain Boissy, Henri-Jean Boulouis, Eric Collin, Jean-Claude Desfontis, David Fretin, Emmanuelle Gilot-Fromont, Etienne Giraud, Nadia Haddad, Viviane HĂ©naux, Elsa Jourdain, Sophie Le Poder-Alcon, Monique L’Hostis, Gilles Meyer, Elodie Monchatre-Leroy, Pierre MormĂšde, Carine Paraud, Ariane Payne, Carole Peroz-Sapede, Claire Ponsart, Claude Saegerman, GaĂ«lle Simon, MichĂšle Tremblay, Nathalie Arnich, Isabelle Attig, Carole Catastini, Charlotte Dunoyer, Nabila Haddache, and Elissa Khamisse.International audienceClostridium botulinum is the main causative agent of botulism, a neurological disease encountered in humans as well as animals. Nine types of botulinum neurotoxins (BoNTs) have been described so far. Amongst these “toxinotypes,” the A, the B and E are the most frequently encountered in humans while the C, D, C/D and D/C are mostly affecting domestic and wild birds as well as cattle. In France for instance, many cases and outbreaks are reported in these animal species every year. However, underestimation is very likely at least for avifauna species where the detection of dead animals can be challenging. Knowledge about BoNTs C, D, C/D, and D/C and the diseases they cause in animals and humans is still scarce and unclear. Specifically, the potential role of animal botulism outbreaks in cattle and poultry as a source of human illness needs to be further assessed. In this narrative review, we present the current knowledge about toxinotypes C, D, C/D, and D/C in cattle and poultry with, amongst various other aspects, their epidemiological cycles. We also discuss the zoonotic potential of these toxinotypes and some possible ways of risk mitigation. An adapted and effective management of botulism outbreaks in livestock also requires a better understanding of these less common and known toxinotypes

    A Novel Prophage-like Insertion Element within yabG Triggers Early Entry into Sporulation in Clostridium botulinum

    No full text
    Sporulation is a finely regulated morphogenetic program important in the ecology and epidemiology of Clostridium botulinum. Exogenous elements disrupting sporulation-associated genes contribute to sporulation regulation and introduce diversity in the generally conserved sporulation programs of endospore formers. We identified a novel prophage-like DNA segment, termed the yin element, inserted within yabG, encoding a sporulation-specific cysteine protease, in an environmental isolate of C. botulinum. Bioinformatic analysis revealed that the genetic structure of the yin element resembles previously reported mobile intervening elements associated with sporulation genes. Within a pure C. botulinum culture, we observed two subpopulations of cells with the yin element either integrated into the yabG locus or excised as a circular DNA molecule. The dynamics between the two observed conformations of the yin element was growth-phase dependent and likely mediated by recombination events. The yin element was not required for sporulation by C. botulinum but triggered an earlier entry into sporulation than in a related isolate lacking this element. So far, the yin element has not been found in any other C. botulinum strains or other endospore-forming species. It remains to be demonstrated what kind of competitive edge it provides for C. botulinum survival and persistence
    corecore