94 research outputs found

    High glucose induces MCP-1 expression partly via tyrosine kinase–AP-1 pathway in peritoneal mesothelial cells

    Get PDF
    High glucose induces MCP-1 expression partly via tyrosine kinase–AP-1 pathway in peritoneal mesothelial cells.BackgroundHigh glucose in peritoneal dialysis solutions has been implicated in the pathogenesis of peritoneal fibrosis in chronic ambulatory peritoneal dialysis (CAPD) patients. However, the mechanisms are not very clear. Peritoneal macrophages seem to participate in the process of peritoneal fibrosis and monocyte chemoattractant protein-1 (MCP-1) plays a key role in the recruitment of monocytes toward the peritoneal cavity. However, little is known about the effect of high glucose on MCP-1 expression and its signal transduction pathway in human peritoneal mesothelial cells.MethodsMesothelial cells were cultured with glucose (5 to 100 mmol/L) or mannitol chronically for up to seven days. MCP-1 expression of mRNA and protein was measured by Northern blot analysis and enzyme-linked immunosorbent assay (ELISA). Chemotactic activity of high-glucose–conditioned culture supernatant was measured by chemotactic assay. To examine the roles of the transcription factors activator protein-1 (AP-1) and nuclear factor-ÎșB (NF-ÎșB), electrophoretic mobility shift assay (EMSA) was performed.ResultsGlucose induced MCP-1 mRNA expression in a time- and dose-dependent manner. MCP-1 protein in cell culture supernant was also increased. Equivalent concentrations of mannitol had no significant effect. High-glucose–conditioned supernatant possessed an increased chemotactic activity for monocytes, which was neutralized by anti–MCP-1 antibody. EMSA revealed that glucose increased the AP-1 binding activity in a time- and dose-dependent manner, but not NF-ÎșB. Curcumin, an inhibitor of AP-1, dose-dependently suppressed the induction of MCP-1 mRNA by high glucose. Tyrosine kinase inhibitors such as genistein (12.5 to 50 ÎŒmol/L) and herbimycin A (0.1 to 1 ÎŒmol/L) inhibited the high-glucose–induced MCP-1 mRNA expression in a dose-dependent manner, and also suppressed the high-glucose–induced AP-1 binding activity.ConclusionsHigh glucose induced mesothelial MCP-1 expression partly via the tyrosine kinase-AP-1 pathway

    Genetic Effects of FTO and MC4R Polymorphisms on Body Mass in Constitutional Types

    Get PDF
    Sasang constitutional medicine (SCM), a Korean tailored medicine, categorizes human beings into four types through states of physiological imbalances and responsiveness to herbal medicine. One SCM type susceptible to obesity seems sensitive to energy intake due to an imbalance toward preserving energy. Common variants of fat mass and obesity associated (FTO) and melanocortin 4 receptor (MC4R) genes have been associated with increased body mass index (BMI) by affecting energy intake. Here, we statistically examined the association of FTO and MC4R polymorphisms with BMI in two populations with 1370 Koreans before and after SCM typing, and with the lowering of BMI in 538 individuals who underwent a 1-month lifestyle intervention. The increased BMI replicated the association with FTO haplotypes (effect size ≃ 1.1 kg/m2) and MC4R variants (effect size ≃ 0.64 kg/m2). After the lifestyle intervention, the carriers of the haplotype represented by the minor allele of rs1075440 had a tendency to lose more waist-to-hip ratio (0.76%) than non-carriers. The constitutional discrepancy for the accumulation of body mass by the effects of FTO and/or MC4R variants seemed to reflect the physique differences shown in each group of SCM constitutional types. In conclusion, FTO and MC4R polymorphisms appear to play an important role in weight gain, while only FTO variants play a role in weight loss after lifestyle intervention. Different trends were observed among individuals of SCM types, especially for weight gain. Therefore, classification of individuals based on physiological imbalance would offer a good genetic stratification system in assessing the effects of obesity genes

    In Vivo and In Vitro Hepatoprotective Effects of Geranium koreanum

    Get PDF
    Geranium koreanum (GK) is an indigenous Chinese herbal medicine widely used for the treatment of various inflammation and liver disorders. However, the exact mechanism of action of GK remains unknown. This study aimed to investigate the protective effect and related molecular mechanism of GK on NaAsO2-induced cytotoxicity in HepG2 cells and liver damage in mice. The cytoprotective role of GK was assessed on HepG2 cells using MTT assay. Oxidative stress and lactate dehydrogenase levels were measured with ROS and LDH assay. Histopathology and serum enzymes levels were estimated. The molecular mechanism was evaluated by qPCR and immunoblotting to ensure the hepatoprotective role of GK against NaAsO2 intoxication in mice. We found cotreatment with GK significantly attenuated NaAsO2-induced cell viability loss, intracellular ROS, and LDH release. Hepatic histopathology and serum biochemical parameters, ALT, and AST were notably improved by cotreatment with GK. Beside, GK markedly altered both mRNA and protein expression level of MAPK. The proapoptotic and antiapoptotic protein Bax/Bcl-2 ratio was significantly regulated by GK. Moreover, GK remarkably suppressed the postapoptotic transcription protein cleaved caspase-3 expression. The present study reveals that GK possesses hepatoprotective activity which is probably involved in the modulation of the MAPK/caspase-3 pathway

    Expression of RsMYB1 in chrysanthemum regulates key anthocyanin biosynthetic genes

    Get PDF
    Background: Several MYB genes belonging to R2R3 MYB transcription factors have been used in several plant species to enhance anthocyanin production, and have shown various expression or regulation patterns. This study focused on the effect of ectopic expression of an RsMYB1 isolated from radish ( Raphanus sativa ) on chrysanthemum cv. \u2018Shinma\u2019. Results: The RT-PCR results confirmed that RsMYB1 regulated the expression of three key biosynthetic genes (CmF3H, CmDFR, and CmANS) that are responsible for anthocyanin production in transgenic chrysanthemum, but were not detected in the non-transgenic line. In all transgenic plants, higher expression levels of key biosynthetic genes were observed in flowers than in leaves. However, the presence of RsMYB1 in chrysanthemum did not affect any morphological characteristics, such as plant height, leaf shape or size, and number of flowers. Furthermore, no anthocyanin accumulation was visually observed in the leaves and floral tissue of any of the transgenic lines, which was further confirmed by anthocyanin content estimation. Conclusion: To our knowledge, this is the first time the role of an MYB transcription factor in anthocyanin production has been investigated in chrysanthemum

    Needle Knife-assisted Endoscopic Polypectomy for a Large Inflammatory Fibroid Colon Polyp by Making Its Stalk into an Omega Shape Using an Endoloop

    Get PDF
    Colonic inflammatory fibroid polyp (IFP) is an uncommon benign polypoid lesion, which is composed of fibroblasts, numerous small vessels and edematous connective tissue with marked eosinophilic inflammatory cell infiltration. This condition is frequently detected in the stomach and small intestine, but uncommon in the colon. Although IFP is a benign lesion, surgical resections are performed in most colonic cases because the polyps are usually too large to resect endoscopically. Only three patients underwent endoscopic polypectomy in our literature reviews. Here, we present a case of IFP in the descending colon successful endoscopically resected using a novel technique of trapping its stalk with an endoloop, forming the stalk into an omega shape, and then dissecting the stalk with a needle knife

    Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae

    Full text link
    Tylosin polyketide synthase (Tyl PKS) was heterologously expressed in an engineered strain of Streptomyces venezuelae bearing a deletion of pikromycin PKS gene cluster using two compatible low-copy plasmids, each under the control of a pikAI promoter. The mutant strain produced 0.5 mg/l of the 16-membered ring macrolactone, tylactone, after a 4-day culture, which is a considerably reduced culture period to reach the maximum production level compared to other Streptomyces hosts. To improve the production level of tylactone, several precursors for ethylmalonyl-CoA were fed to the growing medium, leading to a 2.8-fold improvement (1.4 mg/ml); however, switching the pikAI promoter to an actI promoter had no observable effect. In addition, a small amount of desosamine-glycosylated tylactone was detected from the extract of the mutant strain, revealing that the native glycosyltransferase DesVII displayed relaxed substrate specificity in accepting the 16-membered ring macrolactone to produce the glycosylated tylactone. These results demonstrate a successful attempt for a heterologous expression of Tyl PKS in S. venezuelae and introduce S. venezuelae as a rapid heterologous expression system for the production of secondary metabolites.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45861/1/253_2006_Article_318.pd

    NA

    Get PDF
    http://archive.org/details/effectiveinforma00parkNAN
    • 

    corecore