192 research outputs found

    Retention systems for extraoral maxillofacial prosthetic implants: a critical review

    Get PDF
    We describe the techniques available for retention of implant-supported prostheses: bar-clips, O-rings, and magnets. We present reported preferences and, although this is limited by the heterogeneity of methods used and patients studied, we hope we have identified the best retention systems for maxillofacial prosthetic implants. If practitioners know the advantages and disadvantages of each system, they can choose the most natural and comfortable prosthesis. We searched the PubMed and Scopus databases, and restricted our search to papers published 2001–13. MeSH terms used were Maxillofacial prosthesis and Craniofacial prosthesis OR Craniofacial prostheses. We found a total of 2630 papers, and after duplicates had been removed we analysed the rest and found 25 papers for review. Of these, 12 were excluded because they were case reports or non-systematic reviews. Of the remaining 13, 10 described group analyses and seemed appropriate to find practitioner’s choices, as cited in the abstract (n=1611 prostheses). Three papers did not mention the type of prosthetic connection used, so were excluded. The most popular choices for different conditions were analysed, though the sites and retention systems were not specified in all 10 papers. The bar-clip system was the most used in auricular (6/10 papers) and nasal prostheses (4/10). For the orbital region, 6/10 favoured magnets. Non-osseointegrated mechanical or adhesive retention techniques are the least expensive and have no contraindications. When osseointegrated implants are possible, each facial region has a favoured system. The choice of system is influenced by two factors: standard practice and the abilities of the maxillofacial surgeon and maxillofacial prosthetist

    Understanding the pathways between prenatal and postnatal factors and overweight outcomes in early childhood: a pooled analysis of seven cohorts

    Get PDF
    Published online: 3 April 2023BACKGROUND/OBJECTIVES: Childhood overweight and obesity are influenced by a range of prenatal and postnatal factors. Few studies have explored the integrative pathways linking these factors and childhood overweight. This study aimed to elucidate the integrative pathways through which maternal pre-pregnancy body mass index (BMI), infant birth weight, breastfeeding duration, and rapid weight gain (RWG) during infancy are associated with overweight outcomes in early childhood from ages 3 to 5 years. SUBJECTS/METHODS: Pooled data from seven Australian and New Zealand cohorts were used (n = 3572). Generalized structural equation modelling was used to examine direct and indirect associations of maternal pre-pregnancy BMI, infant birth weight, breastfeeding duration, and RWG during infancy with child overweight outcomes (BMI z-score and overweight status). RESULTS: Maternal pre-pregnancy BMI was directly associated with infant birth weight (β 0.01, 95%CI 0.01, 0.02), breastfeeding duration ≥6 months (OR 0.92, 95%CI 0.90, 0.93), child BMI z-score (β 0.03, 95%CI 0.03, 0.04) and overweight status (OR 1.07, 95%CI 1.06, 1.09) at ages 3-5 years. The association between maternal pre-pregnancy BMI and child overweight outcomes was partially mediated by infant birth weight, but not RWG. RWG in infancy exhibited the strongest direct association with child overweight outcomes (BMI z-score: β 0.72, 95%CI 0.65, 0.79; overweight status: OR 4.49, 95%CI 3.61, 5.59). Infant birth weight was implicated in the indirect pathways of maternal pre-pregnancy BMI with RWG in infancy, breastfeeding duration, and child overweight outcomes. The associations between breastfeeding duration (≥6 months) and lower child overweight outcomes were fully mediated by RWG in infancy. CONCLUSIONS: Maternal pre-pregnancy BMI, infant birth weight, breastfeeding duration and RWG in infancy act in concert to influence early childhood overweight. Future overweight prevention interventions should target RWG in infancy, which showed the strongest association with childhood overweight; and maternal pre-pregnancy BMI, which was implicated in several pathways leading to childhood overweight.Miaobing Zheng, Kylie D. Hesketh, Peter Vuillermin, Jodie Dodd, Li Ming Wen, Louise A. Baur, Rachael Taylor, Rebecca Byrne, Seema Mihrshahi, David Burgner, Mimi L. K. Tang, and Karen J. Campbel

    Genomic Exploration of Distinct Molecular Phenotypes Steering Temozolomide Resistance Development in Patient-Derived Glioblastoma Cells

    Get PDF
    Chemotherapy using temozolomide is the standard treatment for patients with glioblastoma. Despite treatment, prognosis is still poor largely due to the emergence of temozolomide resistance. This resistance is closely linked to the widely recognized inter- and intra-tumoral heterogeneity in glioblastoma, although the underlying mechanisms are not yet fully understood. To induce temozolomide resistance, we subjected 21 patient-derived glioblastoma cell cultures to Temozolomide treatment for a period of up to 90 days. Prior to treatment, the cells’ molecular characteristics were analyzed using bulk RNA sequencing. Additionally, we performed single-cell RNA sequencing on four of the cell cultures to track the evolution of temozolomide resistance. The induced temozolomide resistance was associated with two distinct phenotypic behaviors, classified as “adaptive” (ADA) or “non-adaptive” (N-ADA) to temozolomide. The ADA phenotype displayed neurodevelopmental and metabolic gene signatures, whereas the N-ADA phenotype expressed genes related to cell cycle regulation, DNA repair, and protein synthesis. Single-cell RNA sequencing revealed that in ADA cell cultures, one or more subpopulations emerged as dominant in the resistant samples, whereas N-ADA cell cultures remained relatively stable. The adaptability and heterogeneity of glioblastoma cells play pivotal roles in temozolomide treatment and contribute to the tumor’s ability to survive. Depending on the tumor’s adaptability potential, subpopulations with acquired resistance mechanisms may arise.</p

    ‘Growing your own’: a multi-level modelling approach to understanding personal food growing trends and motivations in Europe

    Get PDF
    Growing food for personal and family consumption is a significant global activity, but one that has received insufficient academic attention, particularly in developed countries. This paper uses data from the European Quality of Life Survey (EQLS) to address three areas of particular concern: the prevalence of growing your own food and how this has changed over time; the individual and household context in which growing takes place; and whether those who grow their own food are happier than those who do not. Results showed that there was a marked increase in growing your own food in Europe, in the period 2003–2007. This increase is largely associated with poorer households and thus, possibly, economic hardship. In the UK however the increase in growing your own food is predominantly associated with older middle class households. Across Europe, whether causal or not, those who grew their own were happier than those who did not. The paper therefore concludes that claims about the gentrification of growing your own may be premature. Despite contrary evidence from the UK, the dominant motive across Europe appears to be primarily economic — to reduce household expenditure whilst ensuring a supply of fresh food

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    A deep dive into the ecology of Gamay (Botany Bay, Australia): current knowledge and future priorities for this highly modified coastal waterway

    Get PDF
    Context: Gamay is a coastal waterway of immense social, cultural and ecological value. Since European settlement, it has become a hub for industrialisation and human modification. There is growing desire for ecosystem-level management of urban waterways, but such efforts are often challenged by a lack of integrated knowledge. Aim and methods: We systematically reviewed published literature and traditional ecological knowledge (TEK), and consulted scientists to produce a review of Gamay that synthesises published knowledge of Gamay’s aquatic ecosystem to identify knowledge gaps and future research opportunities. Key results: We found 577 published resources on Gamay, of which over 70% focused on ecology. Intertidal rocky shores were the most studied habitat, focusing on invertebrate communities. Few studies considered multiple habitats or taxa. Studies investigating cumulative human impacts, long-term trends and habitat connectivity are lacking, and the broader ecological role of artificial substrate as habitat in Gamay is poorly understood. TEK of Gamay remains a significant knowledge gap. Habitat restoration has shown promising results and could provide opportunities to improve affected habitats in the future. Conclusion and implications: This review highlights the extensive amount of knowledge that exists for Gamay, but also identifies key gaps that need to be filled for effective management

    Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers

    Get PDF
    Background: Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). Methods: DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. Results: Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. Conclusion:GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.</p

    A proteomics analysis of 5xFAD mouse brain regions reveals the lysosome-associated protein Arl8b as a candidate biomarker for Alzheimer’s disease

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is characterized by the intra- and extracellular accumulation of amyloid-ß (Aß) peptides. How Aß aggregates perturb the proteome in brains of patients and AD transgenic mouse models, remains largely unclear. State-of-the-art mass spectrometry (MS) methods can comprehensively detect proteomic alterations, providing relevant insights unobtainable with transcriptomics investigations. Analyses of the relationship between progressive Aß aggregation and protein abundance changes in brains of 5xFAD transgenic mice have not been reported previously. METHODS: We quantified progressive Aß aggregation in hippocampus and cortex of 5xFAD mice and controls with immunohistochemistry and membrane filter assays. Protein changes in different mouse tissues were analyzed by MS-based proteomics using label-free quantification; resulting MS data were processed using an established pipeline. Results were contrasted with existing proteomic data sets from postmortem AD patient brains. Finally, abundance changes in the candidate marker Arl8b were validated in cerebrospinal fluid (CSF) from AD patients and controls using ELISAs. RESULTS: Experiments revealed faster accumulation of Aß42 peptides in hippocampus than in cortex of 5xFAD mice, with more protein abundance changes in hippocampus, indicating that Aß42 aggregate deposition is associated with brain region-specific proteome perturbations. Generating time-resolved data sets, we defined Aß aggregate-correlated and anticorrelated proteome changes, a fraction of which was conserved in postmortem AD patient brain tissue, suggesting that proteome changes in 5xFAD mice mimic disease-relevant changes in human AD. We detected a positive correlation between Aß42 aggregate deposition in the hippocampus of 5xFAD mice and the abundance of the lysosome-associated small GTPase Arl8b, which accumulated together with axonal lysosomal membranes in close proximity of extracellular Aß plaques in 5xFAD brains. Abnormal aggregation of Arl8b was observed in human AD brain tissue. Arl8b protein levels were significantly increased in CSF of AD patients. CONCLUSIONS: We report a comprehensive biochemical and proteomic investigation of hippocampal and cortical brain tissue derived from 5xFAD transgenic mice, providing a valuable resource to the neuroscientific community. We identified Arl8b, with significant abundance changes in 5xFAD and AD patient brains. Arl8b might enable the measurement of progressive lysosome accumulation in AD patients and have clinical utility as a candidate biomarker

    The Origin, Early Evolution and Predictability of Solar Eruptions

    Get PDF
    Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt

    Educational neuroscience: progress and prospects

    Get PDF
    Educational neuroscience is an interdisciplinary research field that seeks to translate research findings on neural mechanisms of learning to educational practice and policy, and to understand the effects of education on the brain. Neuroscience and education can interact directly, by virtue of considering the brain as a biological organ that needs to be in the optimal condition to learn (‘brain health’); or indirectly, as neuroscience shapes psychological theory and psychology influences education. In this article, we trace the origins of educational neuroscience, its main areas of research activity, and the principal challenges it faces as a translational field. We consider how a pure psychology approach that ignores neuroscience is at risk of being misleading for educators. We address the major criticisms of the field, respectively comprising a priori arguments against the relevance of neuroscience to education, reservations with the current practical operation of the field, and doubts about the viability of neuroscience methods for diagnosing disorders or predicting individual differences. We consider future prospects of the field and ethical issues it raises. Finally, we discuss the challenge of responding to the (welcome) desire of education policymakers to include neuroscience evidence in their policymaking, while ensuring recommendations do not exceed the limitations of current basic science
    corecore