21 research outputs found

    Dynamical stability of radiation-induced C15 clusters in iron

    Get PDF
    Density functional theory predicts clusters in the form of the C15 Laves phase to be the most stable cluster of self-interstitials in iron at small sizes. The C15 clusters can form as a result of irradiation, but their prevalence and survival in harsh irradiation conditions have not been thoroughly studied. Using a new bond-order potential optimised for molecular dynamics simulations of radiation damage, we explore the dynamical stability of the C15 clusters in iron under irradiation conditions. We find that small C15 clusters make up 5–20% of the interstitial clusters formed directly in cascades. In continuous irradiation, C15 clusters are frequently formed, after which they remain highly stable and grow by absorbing nearby single interstitial atoms. Growth of C15 clusters ultimately leads to collapse into dislocation loops, most frequently into 1/2⟨111⟩ loops and only rarely collapsing into ⟨100⟩ loops at low temperatures. The population, size, and collapse of C15 clusters during continuous irradiation correlates well with their formation energies relative to dislocation loops calculated at zero Kelvin.Peer reviewe

    Defect accumulation and evolution during prolonged irradiation of Fe and FeCr alloys

    Get PDF
    The understanding of materials' behaviour during continuous irradiation is of great interest for utilizing materials in environments where harsh radiation is present, like nuclear power plants. Most power plants, both current and future ones, are based, at least partially, on Fe or FeCr alloys. In this study, we investigate the response of BCC Fe and several FeCr alloys to massively overlapping cascades. The effect of the added chromium on the defect accumulation and defect evolution was studied. Both a bulk setup, for observing the evolution deep inside the material far from grain boundaries and surfaces, and a setup with a nearby open surface, to investigate the effect of a permanent defect sink, were studied. We found that the primary defect production is similar in all materials, and also the build-up before serious overlap is comparable. When cascade overlap starts, we found that different sized clusters are formed in the different materials, depending on the setup. The defect cluster evolution was followed and could be related to the dislocation reactions in the materials. We found that the irradiation mixing was specific to the different chromium concentrations, the low chromium-containing alloy showed ordering, whereas the highest chromium-containing sample showed segregation. (C) 2019 The Authors. Published by Elsevier B.V.Peer reviewe

    Effects of the short-range repulsive potential on cascade damage in iron

    Get PDF
    Recent work has shown that the repulsive part of the interatomic potential at intermediate atomic separations strongly affects the extent and morphology of the damage produced by collision cascades in molecular dynamics simulations. Here, we modify an existing embedded atom method interatomic potential for iron to more accurately reproduce the threshold displacement energy surface as well as the many-body repulsion at intermediate and short interatomic distances. Using the modified potential, we explore the effects of an improved repulsive potential on the primary damage production and the cumulative damage accumulation in iron. We find that the extent of the damage produced by single cascades, in terms of surviving Frenkel pairs, directly correlates with the change in threshold displacement energies. On the other hand, the damage evolution at higher doses is more dependent on the formation and stability of different defect clusters, defined by the near-equilibrium part of the interatomic potential.Peer reviewe

    Molecular dynamics simulation of beryllium oxide irradiated by deuterium ions: sputtering and reflection

    Get PDF
    The sputtering and reflection properties of wurtzite beryllium oxide (BeO) subjected to deuterium (D) ions bombardment at 300 K with ion energy between 10 eV and 200 eV is studied by classical molecular dynamics. Cumulative irradiations of wurtzite BeO show a D concentration threshold above which an 'unphysical dramatic' sputtering is observed. From the cumulative irradiations, simulation cells with different D concentrations are used to run non-cumulative irradiations at different concentrations. Using a D concentration close to the experimentally determined saturation concentration (0.12 atomic fraction), the simulations are able to reproduce accurately the experimental sputtering yield of BeO materials. The processes driving the sputtering of beryllium (Be) and oxygen (O) atoms as molecules are subsequently determined. At low irradiation energy, between 10 eV and 80 eV, swift chemical sputtering (SCS) is dominant and produces mostly ODz molecules. At high energy, the sputtered molecules are mostly BexOy molecules (mainly BeO dimer). Four different processes are associated to the formation of such molecules: the physical sputtering of BeO dimer, the delayed SCS not involving D ions and the detachment-induced sputtering. The physical sputtering of BeO dimer can be delayed if the sputtering event implies two interactions with the incoming ion (first interaction in its way in the material, the other in its way out if it is backscattered). The detachment-induced sputtering is a characteristic feature of the 'dramatic' sputtering and is mainly observed when the concentration of D is close to the threshold leading to this sputtering regime.Peer reviewe

    CASCADE DEBRIS OVERLAP MECHANISM OF <100> DISLOCATION LOOP FORMATION IN Fe AND FeCr

    Get PDF
    Two types of dislocation loops are observed in irradiated alpha-Fe, the 1/2 loop and the loop. Atomistic simulations consistently predict that only the energetically more favourable 1/2 loops are formed directly in cascades, leaving the formation mechanism of loops an unsolved question. We show how loops can be formed when cascades overlap with random pre-existing primary radiation damage in Fe and FeCr. This indicates that there are no specific constraints involved in the formation of loops, and can explain their common occurrence. Copyright (C) EPLA, 2017Peer reviewe

    Phase transition of two-dimensional ferroelectric and paraelectric Ga2O3 monolayers : A density functional theory and machine learning study

    Get PDF
    Ga2O3 is a wide-band-gap semiconductor of great interest for applications in electronics and optoelectronics. Two-dimensional (2D) Ga2O3 synthesized from top-down or bottom-up processes can reveal new heterogeneous structures and promising applications. In this paper, we study phase transitions among three low-energy stable Ga2O3 monolayer configurations using density functional theory and a machine learning Gaussian approximation potential, together with solid-state nudged elastic band calculations. Kinetic minimum energy paths involving direct atomic jump as well as concerted layer motion are investigated. The low phase transition barriers indicate feasible tunability of the phase transition and orientation via strain engineering and external electric fields. Large-scale calculations using the trained machine learning potential on the thermally activated single-atom jumps reveal the clear nucleation and growth processes of different domains. The results provide useful insights into future experimental synthesis and characterization of 2D Ga2O3 monolayers.Peer reviewe

    Effect of cascade overlap and C15 clusters on the damage evolution in Fe : An OKMC study

    Get PDF
    In order to investigate the long-term evolution of radiation-induced defects in the fission- and fusion-relevant material iron, we introduce cascade overlap effects into Object Kinetic Monte Carlo simulations. In addition to cascade overlap, we study the effect of introducing discrete C15 Laves phase clusters into the simulations. By applying either, none, or both of these effects we identify how they influence the evolution of the system. We find that both cascade overlap and C15 clusters affect the evolution of the radiation damage in different ways and on different time scales. Cascade overlap is found to reduce the number of Frenkel pairs. On the other hand, the explicit consideration of C15 Laves phase clusters increases the accumulation of defects at low dose. The results are compared to Molecular Dynamics simulation results under similar conditions.Peer reviewe

    On the classification and quantification of crystal defects after energetic bombardment by machine learned molecular dynamics simulations

    Get PDF
    The analysis of the damage on plasma facing materials (PFM), due to their direct interaction with the plasma environment, is needed to build the next generation of nuclear fusion reactors. After systematic analyses of numerous materials over the last decades, tungsten has become the most promising candidate for a nuclear fusion reactor. In this work, we perform molecular dynamics (MD) simulations using a machine learned interatomic potential, based on the Gaussian Approximation Potential framework, to model better neutron bombardment mechanisms in pristine W lattices. The MD potential is trained to reproduce realistic short-range dynamics, the liquid phase, and the material recrystallization, which are important for collision cascades. The formation of point defects is quantified and classified by a descriptor vector (DV) based method, which is independent of the sample temperature and its constituents, requiring only modest computational resources. The locations of vacancies are calculated by the k-d-tree algorithm. The analysis of the damage in the W samples is compared to results obtained by Finnis–Sinclair and Tersoff–Ziegler–Biersack–Littmark potentials, at a sample temperature of 300 K and a primary knock-on atom (PKA) energy range of 0.5–10 keV, where a good agreement with the reported number of Frenkel pair is observed. Our results provide information about the advantages and limits of the machine learned MD simulations with respect to the standard ones. The formation of dumbbell and crowdion defects as a function of PKA energy were identified and distinguished by our DV method.Peer reviewe

    Insights into the primary radiation damage of silicon by a machine learning interatomic potential

    Get PDF
    We develop a silicon Gaussian approximation machine learning potential suitable for radiation effects, and use it for the first ab initio simulation of primary damage and evolution of collision cascades. The model reliability is confirmed by good reproduction of experimentally measured threshold displacement energies and sputtering yields. We find that clustering and recrystallization of radiation-induced defects, propagation pattern of cascades, and coordination defects in the heat spike phase show striking differences to the widely used analytical potentials. The results reveal that small defect clusters are predominant and show new defect structures such as a vacancy surrounded by three interstitials. Impact statement Quantum-mechanical level of accuracy in simulation of primary damage was achieved by a silicon machine learning potential. The results show quantitative and qualitative differences from the damage predicted by any previous models.Peer reviewe

    Collision cascades overlapping with self-interstitial defect clusters in Fe and W

    Get PDF
    Overlap of collision cascades with previously formed defect clusters become increasingly likely at radiation doses typical for materials in nuclear reactors. Using molecular dynamics, we systematically investigate the effects of different pre-existing self-interstitial clusters on the damage produced by an overlapping cascade in bcc iron and tungsten. We find that the number of new Frenkel pairs created in direct overlap with an interstitial cluster is reduced to essentially zero, when the size of the defect cluster is comparable to that of the disordered cascade volume. We develop an analytical model for this reduced defect production as a function of the spatial overlap between a cascade and a defect cluster of a given size. Furthermore, we discuss cascade-induced changes in the morphology of self-interstitial clusters, including transformations between 1/2 and dislocation loops in iron and tungsten, and between C15 clusters and dislocation loops in iron. Our results provide crucial new cascade-overlap effects to be taken into account in multi-scale modelling of radiation damage in bcc metals.Peer reviewe
    corecore