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Abstract.
Overlap of collision cascades with previously formed defect clusters become

increasingly likely at radiation doses typical for materials in nuclear reactors.
Using molecular dynamics, we systematically investigate the effects of different
pre-existing self-interstitial clusters on the damage produced by an overlapping
cascade in bcc iron and tungsten. We find that the number of new Frenkel pairs
created in direct overlap with an interstitial cluster is reduced to essentially zero,
when the size of the defect cluster is comparable to that of the disordered cascade
volume. We develop an analytical model for this reduced defect production as
a function of the spatial overlap between a cascade and a defect cluster of a
given size. Furthermore, we discuss cascade-induced changes in the morphology
of self-interstitial clusters, including transformations between 1/2〈1 1 1〉 and 〈1 0 0〉
dislocation loops in iron and tungsten, and between C15 clusters and dislocation
loops in iron. Our results provide crucial new cascade-overlap effects to be taken
into account in multi-scale modelling of radiation damage in bcc metals.
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1. Introduction

Radiation damage in fission and fusion-relevant
bcc metals has been studied for decades in both
experimental and modelling work. The samples
studied in experiments are typically irradiated up to
doses of several displacements per atom (dpa) [1, 2, 3,
4]. The damage dose in the wall materials of current
and future fission and fusion reactor wall materials
can reach tens or hundreds of dpa [5, 6, 7]. At these
doses, the density of defects is so high that subsequent
collision cascades are likely to overlap with previously
formed interstitial- and vacancy-type defect clusters,
such as dislocation loops. Nevertheless, simulations of
collision cascades have almost exclusively focused on
the damage produced in defect-free single crystals [8].
The damage produced in cascade simulations, using
e.g. molecular dynamics, can be transferred to larger-
scale simulations methods, such as various kinetic
Monte Carlo or cluster dynamics models, to simulate
the long-term accumulation and evolution of radiation
damage [9, 10, 11, 12]. The accuracy of the long-term
simulations therefore rely on the cascade damage input
from simulations of collision cascades. Consequently,
a physically accurate multi-scale model for radiation
damage should incorporate the effects of cascades
overlapping with pre-existing defects [13].

Among the extensive literature on cascade sim-
ulations using molecular dynamics (MD), only a few
studies on the effects of cascade overlap in bcc metals
have been performed [14, 15, 16, 17]. All previous stud-
ies establish that the extent of the damage produced
in cascade overlap is significantly reduced compared to
cascades in a defect-free material. Gao et al. simulated
low-energy (0.4–5 keV) cascades overlapping with the
debris of a previous cascade in iron [14]. Stoller et al.
performed a similar study at slightly higher primary
knock-on atom (PKA) energies (10 keV) [15]. Both
studies revealed a clear reduction in the amount of sur-
viving point defects due to cascade overlap. Terentyev
et al. carried out a set of simulations on interstitial-
type dislocation loops in iron [16]. They reported that
although the amount of new damage in cascade over-
lap with dislocation loops is generally reduced, the
distribution of point defects and the final size of the
pre-existing loop is dependent on whether the cascade
dissolves the loop or not. Recently, we investigated
the overlap effects for high-energy cascades in iron (50
keV) and tungsten (150 keV), where secondary cas-

cades were initiated on top of the debris of a previ-
ous cascade [17]. We observed a clear reduction in the
amount of new defects in overlapping cascades, also at
these higher energies, in both Fe and W. Furthermore,
formation of more complex, immobile defect clusters
were observed, when cascades overlapped with larger
pre-existing defect clusters.

Self-interstitial atoms in bcc metals cluster
together mainly in the form of dislocation loops with
the Burgers vectors 1/2〈1 1 1〉 and 〈1 0 0〉. In iron,
however, self-interstitial clusters exhibiting the C15
Laves phase have been theoretically predicted as the
most stable interstitial-type cluster at small sizes [18].
The C15-type clusters can form directly in collision
cascades and become energetically unstable compared
to dislocation loops at sizes of around 50 interstitial
atoms [19]. Acting as stationary traps for mobile
dislocations, they can have a strong impact on the
evolution of the defect structure in iron-based alloys,
as observed in previous atomistic simulations [20, 21].

Both 1/2〈1 1 1〉 and 〈1 0 0〉 dislocation loops
are readily observed in irradiation experiments of
iron and tungsten [22, 2, 23, 24] and in MD
simulations of tungsten [25], despite the 〈1 0 0〉 loop
being energetically unfavoured compared to 1/2〈1 1 1〉
loops [19]. The populations of the two dislocation loops
depend, however, on the irradiation conditions and
type of irradiation (neutrons, electrons, or ions) [23].
In iron, the formation energy of 〈1 0 0〉 loops decreases
with temperature due to magnetic effects, and they
become energetically more stable than 1/2〈1 1 1〉 loops
above temperatures around 600 K [26]. While
experiments do show increasing fractions of 〈1 0 0〉
loops at higher temperatures in iron [3], 〈1 0 0〉 loops
are also formed in low-temperature irradiations [23].
The dominating formation mechanism of the 〈1 0 0〉
loops are therefore still actively debated. Several
mechanisms have been proposed in the literature,
either from combinations of two 1/2〈1 1 1〉 dislocation
loops [27, 28], spontaneous changes in the Burgers
vector [29, 30], collapse of growing C15 clusters [31],
or due to a shockwave in high-energy cascades [32].
Recently, we showed using MD simulations that
formation of 〈1 0 0〉 loops become increasingly likely
at doses when cascade overlap is frequent, and form
either through the earlier-proposed mechanisms or
from partial cascade-overlap with mixed dislocation
networks [33].

In this work, we systematically and compre-
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hensively study the effects of cascade overlap on
interstitial-type clusters for low-energy (below the sub-
cascade threshold) cascades in both iron and tungsten.
We initiate cascades on or close to interstitial-type clus-
ters of a size and type typical to those formed directly
in cascades. In tungsten, these clusters include the
1/2〈1 1 1〉 and 〈1 0 0〉 dislocation loops. In iron, we also
study overlap on the highly stable C15 cluster. We
analyse the extent of the surviving damage as a func-
tion of the spatial overlap between the cascade and the
pre-existing cluster. The results are combined into a
simple analytical model for predicting the defect pro-
duction in cascade overlap. Additionally, we investi-
gate cascade-induced changes in the morphology of the
pre-existing cluster. This includes changes in the Burg-
ers vector of dislocation loops, collapse of C15 clusters
into loops, and changes in cluster size. Our observa-
tions provide valuable input for incorporating overlap
effects in higher-scale simulations of radiation damage.

2. Methods

2.1. Simulation details

All simulations were carried out using the classical
molecular dynamics code parcas [34, 35], with
several different embedded atom method interatomic
potentials suitable for cascade simulations. For iron,
we used the well-established potential by Ackland et
al. [36], hereafter denoted AM04. Additionally, we used
the potential by Marinica [18, 37], denoted M07, which
correctly reproduces the C15 Laves phase cluster as the
most stable interstitial cluster at small and medium
sizes [18]. The M07 potential was recently modified
to be more accurate at short distances (and hence
more suitable for cascade simulations) while retaining
all defect and equilibrium properties of the original
M07 potential [21]. We also carried out simulations
using this modified M07 potential, denoted M07-B.
For tungsten, we used the potential by Ackland and
Thetford [38], with the short-range modification by
Zhong et al. [39], denoted AT-ZN. We also used the
potential by Derlet et al. [40] with the short-range
connection to the ZBL potential [41] by Björkas et
al. [42], denoted DND-BN. Additionally, we repeated
the simulations using the potential by Marinica et
al. [43] (the version therein referred to as EAM4) with
the short-range modification by Sand et al. [44] (therein
named M-S h), here denoted M4-S. A comparison
of some cascade-relevant properties between these
potentials is provided in Appendix A and Appendix
B.

Low-energy cascades, 3 and 5 keV in Fe and 10
and 30 keV in W, were initiated in systems containing
a cluster of NSIA self-interstitial atoms (SIA). The
cluster sizes were chosen as those typically formed

directly in cascades, or after a short thermal evolution.
In Fe, we studied cluster sizes in the range NSIA = 1–
50 and in W NSIA = 1–100. The disordered cascade
regions formed at these PKA energies are larger than
the pre-existing SIA cluster. Hence, when we refer to
full overlap, the cascade has completely enveloped the
pre-existing cluster. Clusters larger than about 15 SIA
were introduced as 1/2〈1 1 1〉 and 〈1 0 0〉 dislocation
loops and (in Fe) as C15 clusters. Smaller clusters
of NSIA = 1–11 were embedded as parallel dumbbell
configurations and (in Fe) as C15 clusters. The
details of all pre-existing clusters used in the cascade
simulations are summarised in table 1. The sizes of
the simulation cells containing the SIA clusters were
around 40 unit cells in each direction for Fe, 54 unit
cells for 10 keV cascades in W, and around 70 unit
cells for 30 keV cascades in W. The exact system sizes
varied slightly depending on cluster type, as 1/2〈1 1 1〉
dislocation loops were embedded in a box with the x, y,
and z axes along the [1 1 0], [1 1 2], and [1 1 1] directions,
respectively.

After relaxation to zero pressure and the desired
temperature, cascades were initiated at different
distances from the centre of the pre-existing cluster.
The temperature was controlled at the borders of the
system using a Berendsen thermostat [45]. Electronic
stopping was applied as a friction term on atoms with
kinetic energies above 1 eV in Fe [46] and above 10
eV in W [47, 48]. The simulation time for all cascades
was 30 ps. The PKA was directed towards the centre
of the pre-existing cluster, from a given distance in a
uniformly distributed random crystal direction. The
range of PKA-to-centre distances was chosen so that
the complete overlap range was covered, i.e. from
cascades fully overlapping with the pre-existing cluster
up to the limit of no overlap. Initial PKA distances
up to 50–60 Å proved to be sufficient for the PKA
energies used here. At each PKA distance, 100–
200 simulations were carried out to provide enough
statistics. This resulted in 400–800 simulations for
each energy, temperature, cluster size, cluster type,
and potential, and in total several hundred thousand
individual cascade simulations.

2.2. Analysis

After each cascade, the surviving damage was
analysed. Interstitial atoms and vacancies were located
using the Wigner-Seitz analysis method. The point
defects were grouped into clusters to gather statistics
on the final size of the pre-existing cluster. For
the cluster analysis, we used cutoff radii between the
second and third nearest neighbour for vacancies, and
between the third and fourth nearest neighbour for
interstitials [49]. The dislocation extraction algorithm
implemented in OVITO was used to identify possible
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Table 1: Summary of pre-existing interstitial clusters used in the cascade-overlap simulations. For each cluster
type, size, temperature, PKA energy, and interatomic potential, around 400–800 cascade simulations were carried
out. The PKA was initiated at different distances from the centre of the pre-existing cluster, ranging from 10 to
60 Å, in order to cover the full range of overlap.

Fe
Cluster type Size (NSIA) T (K) EPKA (keV) Potential

1/2〈1 1 1〉 loop 14, 22, 26, 30, 48 0, 300 3, 5 AM04, M07-B, M07
〈1 0 0〉 loop 16, 22, 26, 30, 48 0, 300 3, 5 AM04, M07-B, M07
C15 4, 11, 17, 30, 40, 50 0, 300 3, 5 M07-B, M07
〈1 1 0〉 dumbbells 1, 2, 4 0 3, 5 M07-B
〈1 1 1〉 dumbbells 6, 8, 10 0 3, 5 M07-B

W
Cluster type Size (NSIA) T (K) EPKA (keV) Potential

1/2〈1 1 1〉 loop 18, 22, 30, 52, 104 0, 300 10 AT-ZN, DND-BN, M4-S
1/2〈1 1 1〉 loop 30, 104 300 30 AT-ZN
〈1 0 0〉 loop 16, 22, 30, 56, 104 0, 300 10 AT-ZN, DND-BN, M4-S
〈1 0 0〉 loop 30, 104 300 30 AT-ZN
〈1 1 1〉 dumbbells 1, 2, 3, 4, 6, 8, 10 0 10 AT-ZN
〈1 1 1〉 dumbbells 1, 4, 10 0 30 AT-ZN

dislocation loops [50, 51]. In Fe, C15 clusters were
identified by analysing the geometries of interstitial
clusters. C15 clusters isolated with the Wigner-
Seitz analysis consist of non-parallel 〈1 1 0〉 dumbbells,
connected to form hexagonal and triangular rings of
atoms lying in {1 1 1} planes. By looking at the
nearest-neighbour angles and the plane on which they
lie, C15 or C15-like clusters can therefore be identified.
This approach was previously used for identifying C15
clusters among large numbers of defect clusters in
highly damaged systems [21], and proved to be fairly
reliable.

The cascade-overlap effect on the number of new
Frenkel pairs (FPs) and the size and type of the final
cluster were analysed as a function of distance between
the centre of the disordered cascade-induced molten
region (at peak damage) and the centre of the pre-
existing cluster. From now on we refer to this cascade–
to–cluster distance as the separation distance. A
separation distance of zero represents full overlap of the
disordered cascade region with the pre-existing cluster.
The limit of no overlap is reached at a separation
distance given by the sum of the radii of the cluster
and the cascade region. The centre of the disordered
cascade region at peak damage was calculated as the
geometrical centre of the liquid atoms, weighted by the
kinetic energy of each atom. An atom was labelled
liquid when the average kinetic energy of the atom and
its neighbours was above the average kinetic energy
at the melting point predicted by the potential, i.e.
3
2kBTmelt [34]. Using the disordered group of atoms at
peak damage, it is possible to obtain both a location

and size of the molten cascade region, and hence the
extent of overlap. The average volume and radius
of the cascade region is useful when interpreting and
analysing the results. The volume of the cascade region
was calculated by enclosing the disordered atoms by a
surface mesh using OVITO. An effective average radius
of the cascade at a given PKA energy and temperature
was calculated by assuming a spherical cascade region
(which, on average, is a good assumption for cascades
well below the subcascade splitting threshold energy).

As is always true for cascade damage, the sta-
tistical variations are large, since individual cascades
can vary significantly. In order to get reliable statis-
tics, a large number of simulations was therefore nec-
essary. Consequently, the results require careful statis-
tical analysis in order to extract meaningful data and
overall trends. Figure 1 shows a typical case for the
number of new Frenkel pairs created in overlap with
an existing SIA cluster, as a function of the separation
distance. The data points, each corresponding to one
cascade simulation with a calculated separation dis-
tance and a number of new Frenkel pairs, were grouped
into bins with widths of 5 Å. Figure 1 shows the calcu-
lated mode, mean, and median values of each bin. The
uncertainty of the mean values are the standard errors
of the mean. Error bars of the median values are rep-
resented by the interquartile range (i.e. the 25% and
75% percentiles), showing the spread of the data. We
chose to represent all data analysed as functions of sep-
aration distance using the median values of each bin,
due to them being less sensitive to outliers than the
mean values, and always uniquely defined, as opposed
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Figure 1: Example of the statistical spread and
calculated mode, mean, and median values of the
binned data for numbers of new Frenkel pairs created
in overlapping cascades. Each small blue point is the
result of one simulation. The data are from 10 keV
cascades overlapping with a 30 SIA 1/2〈1 1 1〉 loop in
W at 0 K, using the AT-ZN potential.

to the mode. Bins with poor statistics (fewer than ten
data points) were excluded. Typically, each bin con-
tains data from around 50–100 individual simulations.

3. Point defect production

Figure 1 shows the general trend and statistical
variations of the number of new Frenkel pairs created
in overlapping cascades, as a function of the separation
distance. The horizontal dashed line indicates the
median numbers of Frenkel pairs created in the
corresponding defect-free material. Results from
cascades in defect-free lattices are given in Appendix
C. At maximum overlap (zero separation distance), the
number of new Frenkel pairs is reduced to a minimum,
typically a small fraction of the corresponding defect-
free number. As the separation distance increases,
and the cascade is only partially overlapping with the
pre-existing cluster, the number of new Frenkel pairs
increases, until it saturates to the value expected from
simulations in the defect-free material.

Representative examples illustrating the effects
of different simulation conditions in both Fe and W
are shown in figure 2. Figure 2a shows the defect
production for clusters of different type but same size.
The data follows the same trend regardless of pre-
existing cluster type, meaning that the reduction in
new damage due to cascade overlap is not dependent
on the type of the SIA cluster. For example, in Fe
both types of dislocation loops follow the same curve
as a C15 cluster, provided that they are comparable

in size. This is expected in the case of full overlap
(i.e. at short separation distances), as the cascade
then completely dissolves the cluster into a molten
region, and all information about the morphology of
the original cluster is lost. However, even in the case
of partial overlap, i.e. when the cascade region only
partially dissolves the pre-existing cluster, the number
of new surviving Frenkel pairs is the same regardless of
cluster type in both Fe and W. In particular, overlap
on three-dimensional C15 clusters results in the same
defect production as planar loops at all separation
distances, indicating that the dimensionality of the
pre-existing cluster has no visible effect in the studied
cluster size range.

Figure 2b shows examples of the defect production
for the same cluster type of different sizes. For
cascades with the same PKA energy, increasing the size
of the pre-existing SIA cluster decreases the number
of created Frenkel pairs at all separation distances,
although the spread of the data is large. The size
dependence on the decrease in numbers of new Frenkel
pairs for fully overlapping cascades with different
PKA energies is shown in figures 3–4 for Fe and W,
respectively. In the lower figures of figures 3–4, the
data points are normalised by the FP count in the
defect-free material in the vertical axis, and by the
size of the cascade volume in the horizontal axis.
The normalised data overlaps completely (within the
statistical uncertainty), indicating that the reduced
number of new Frenkel pairs in cascade overlap can be
estimated from figures 3–4 for any PKA energy, when
considering the relative size of the defect cluster and
the cascade region. In both Fe and W, the normalised
data saturates to a value close to zero when the radius
of the pre-existing SIA cluster is roughly half that of
the disordered cascade region. The number of Frenkel
pairs at the saturation size varies slightly between the
interatomic potentials, but the overall trend is the
same.

Figure 2c shows the difference in the defect
production between 0 and 300 K. The temperature
dependence on the overlap effect is weak. Cascades
in W show no visible temperature dependence in the
0–300 K range, while a slight but statistically negligible
decrease in the Frenkel pair counts is visible in Fe.
The difference roughly corresponds to the decrease in
surviving defect count in the defect-free material as
the temperature is increased, and no differences in the
cascade overlap behaviour is observed.

Increasing the PKA energy will naturally produce
higher numbers of Frenkel pairs at all separation
distances, as seen in figure 2d. The trend is
otherwise similar. The saturation distance is increased
corresponding to the increase in the molten cascade
region. The PKA energy dependence on the numbers
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(a) Dependence on pre-existing cluster type. Fe: EPKA = 5
keV, NSIA = 30, T = 300 K, M07-B potential. W:
EPKA = 10 keV, NSIA = 104, T = 300 K, AT-ZN potential.
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(b) Dependence on pre-existing cluster size. Fe: EPKA = 3
keV, 1/2〈1 1 1〉 loops, T = 0 K, M07-B potential. W:
EPKA = 10 keV, 1/2〈1 1 1〉 loops, T = 0 K, AT-ZN
potential.
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(c) Dependence on temperature. Fe: EPKA = 3 keV,
1/2〈1 1 1〉 loops, NSIA = 48, AM04 potential. W: EPKA =
10 keV, 〈1 0 0〉 loops, NSIA = 104, AT-ZN potential.
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(d) Dependence on PKA energy. Fe: 1/2〈1 1 1〉 loops,
NSIA = 26, T = 0 K, AM04 potential. W: 〈1 0 0〉 loops,
NSIA = 104, T = 300 K, AT-ZN potential.
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(e) Dependence on interatomic potential. Fe: EPKA = 3
keV, 〈1 0 0〉 loops, NSIA = 48, T = 0 K. W: EPKA = 10
keV, 1/2〈1 1 1〉 loops, NSIA = 104, T = 0 K

Figure 2: Examples of the reduced defect production for cascades overlapping with SIA clusters in iron and
tungsten, as functions of separation distance (i.e the centre-to-centre distance between the pre-existing cluster
and the disordered cascade region). Simulation details are given below each figure. Each data point is the median
value in a bin containing in the order of 50–100 simulations. The horizontal lines show the median number of
Frenkel pairs in cascades in the defect-free material. The error bars show the interquartile range, i.e. the spread
of the data around the median. The data points are slightly shifted in the x axis direction to make the error
bars visible.
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Figure 3: Upper: numbers of new Frenkel pairs created
in fully overlapping cascades as a function of the size
of the pre-existing SIA cluster in Fe and the M07-B
potential. Lower: normalised data showing relative
numbers of Frenkel pairs as a function of relative size
of the pre-existing cluster to the disordered cascade
region. Np is the number of Frenkel pairs produced in
cascades in the defect-free material, rd is the radius of
the SIA cluster, and rc is the approximate radius of
the disordered cascade region at peak damage.

of new FPs at full overlap is also shown in figures 3–4,
as discussed above.

Finally, figure 2e shows examples of the differences
in the reduced FP production in different interatomic
potentials. Apart from the different numbers of Frenkel
pairs in the defect-free material (i.e. the limit of no
overlap), the main difference is the surviving numbers
of Frenkel pairs at full overlap. All other trends
discussed above are true regardless of potential.

4. Analytical model for point defect
production

In order to incorporate the effects of cascade overlap
on the defect production in larger-scale simulation
methods, it would be useful to develop an approximate
model for the overlap effect as a function of separation
distance. The model should correctly reproduce all
trends discussed above, in order to allow predicting
the numbers of new Frenkel pairs in cascade overlap
with a given SIA cluster at a given PKA energy and
temperature. Due to the chaotic nature of collision
cascades, any model predicting the surviving damage
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Figure 4: Upper: numbers of new Frenkel pairs created
in fully overlapping cascades as a function of the size
of the pre-existing SIA cluster in W and the AT-ZN
potential. Lower: normalised data showing relative
numbers of Frenkel pairs as a function of relative size
of the pre-existing cluster to the disordered cascade
region. Np is the number of Frenkel pairs produced in
cascades in the defect-free material, rd is the radius of
the SIA cluster, and rc is the approximate radius of
the disordered cascade region at peak damage.

will naturally only be approximately accurate. It is
therefore our goal to construct a model as general as
possible, that captures the correct overlap behaviour
without relying on numerical fitting to approximate
data or specific features of the interatomic potential.

Following simple arguments, all trends discussed
previously for the reduced defect production in cascade
overlap with SIA clusters can be combined into an
approximate analytical function. The function should
satisfy the following conditions. Firstly, the number
of new Frenkel pairs created in cascade overlap (N)
should reach the corresponding number produced
in cascades in the defect-free material (Np) when
the cascade no longer overlaps with the pre-existing
cluster, i.e. at a separation distance of around rd + rc.
Here, rd is the radius of the defect cluster and rc
is the radius of the molten cascade region at peak
damage. Secondly, for a given PKA energy, increasing
the size of the SIA cluster should decrease the number
of new Frenkel pairs at all separation distances, as
observed in the previous section. Finally, at full overlap
(zero separation distance), the number of new Frenkel
pairs is typically a small fraction of the expected FP
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Fe. Lower: normalised data compared to the analytical
model. See the text for details.

0 10 20 30 40 50

r (Å)
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Figure 6: Upper: simulation data for the numbers of
new Frenkel pairs as functions of separation distance in
W. Lower: normalised data compared to the analytical
model. See the text for details.

count in the defect-free material (Np). We will call
this full-overlap Frenkel pair count N0, which is a
parameter depending primarily on the relative size
of the cascade region and the pre-existing cluster,
as shown in figures 3–4. As is clear from figure 2,
the general shape of the data can be captured with
any sigmoid function. However, a simple symmetric
sigmoid function starting from zero separation distance
and saturating towards the maximum value at the
limit of no overlap will not satisfy the second condition
given above. That is, it will not reproduce the correct
size dependence (increasing the defect cluster size will
symmetrically ”stretch” the sigmoid curve towards
zero and the increased limit of no overlap, which
incorrectly results in higher numbers of Frenkel pairs
at low separation distances compared to a smaller
cluster).

A simple function that satisfies the above
conditions, and therefore reproduces all observed and
expected trends is

N =


N0 , r < rd

Np − (Np −N0) exp

[
− (r − rd)2

(arc)2

]
, r ≥ rd.

(1)

Here, the sigmoid function (given by an exponential
function) is shifted according to the size of the pre-
existing defect cluster to reproduce the correct size
dependence. A similar exponential function was used
by Gao et al. for describing overlap with debris from
a previous cascade [14]. The saturation distance is
defined by the constant a. We fix a = 0.75, which
results in a limit of no overlap at a distance slightly
above rd + rc, in agreement with the simulation data.
We stress that, after the general choice of a, Eq. 1
contains no free fitting parameters. The dependence on
temperature, PKA energy, and interatomic potential
are all implicitly accounted for in the values of Np

and rc, which are readily available from simulations
of cascades in the defect-free material (see Appendix
C). Naturally, these values will be different in different
interatomic potentials, and can be chosen either as
approximate values or values given by a specific
potential. The only parameter needed from cascade-
overlap data is N0, which can be estimated from
figures 3–4 for any PKA energy below the subcascade-
splitting threshold. However, as discussed previously,
for sufficiently large pre-existing SIA clusters, N0 is
very close to zero in both Fe and W.

The only variable defining the overlap between
the cascade region and the pre-existing cluster in
both our simulation data and the analytical model
is the separation distance. That is, we have not
included any dependence on the position of the cascade
region with respect to the geometrical features of
the pre-existing cluster, such as the habit plane of
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Figure 7: Examples comparing the analytical model
with data from cascade-overlap simulations in Fe. The
shaded areas show the statistical spread in the data.
Case (a) is for 5 keV cascades on a pre-existing 22 SIA
1/2〈1 1 1〉 loop at 300 K in the AM04 potential. Case
(b) is: 3 keV, 30 SIA 〈1 0 0〉 loop, 300 K in M07, and
case (c): 5 keV, 48 SIA 〈1 0 0〉 loop, 0 K in M07-B.

a dislocation loop. For example, we have made no
distinction between whether the cascade region is
located in an in-plane or out-of-plane direction from
the loop centre. This effectively means that we assume
all SIA clusters, including dislocation loops, to be
spherical with a volume corresponding to the radius
of the cluster. This is justified by the observation
in the previous section that the dimensionality of the
pre-existing cluster, i.e. C15 clusters compared to
dislocation loops, has no visible effect on the average
defect production (in the cluster size range considered
here). Additionally, spherical clusters are also typically
assumed in object kinetic Monte Carlo models [12],
which makes our model directly applicable to the SIA
clusters considered in larger-scale modelling methods.
As previously mentioned, the cascade region is also
assumed to be spherical, which on average is a good
approximation at low PKA energies, when the cascade
does not split into multiple subcascades. However, the
model could also be used for PKA energies above the
subcascade threshold by considering the volumes of
individual subcascades [52, 53].

When comparing the model to the data, it is useful
to normalise the exponential part as

N

Np
= 1− (1−N ′

0) exp

(
−r′2

a2

)
, r′ > 0, (2)

where N ′
0 = N0/Np and r′ = (r − rd)/rc. In this

way, the data should reach the limit of no overlap
(N/Np = 1) at r′ = 1 for all cases. Negative
values of r′ correspond to the maximum-overlap range
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0

10

20

N
u

m
b

er
of

n
ew

F
re

n
ke

l
p

ai
rs

W

(a)

(b)

(c)

Figure 8: Examples comparing the analytical model
with data from cascade-overlap simulations in W. The
shaded areas show the statistical spread in the data.
Case (a) is for 10 keV cascades on a pre-existing 56 SIA
〈1 0 0〉 loop at 300 K in the AT-ZN potential. Case (b)
is: 10 keV, 52 SIA 1/2〈1 1 1〉 loop, 0 K in M4-S, and
case (c): 30 keV, 30 SIA 〈1 0 0〉 loop, 300 K in AT-ZN.

where N/Np is assumed to be constant (N ′
0), as in

Eq. 1. Figures 5–6 show the raw simulation data
of the defect production for all pre-existing loop
types, temperatures, PKA energies, and interatomic
potentials for Fe and W, respectively. In the lower
figures, the data is normalised in order to compare all
data with the analytical model using Eq. 2. Despite
normalising the data, the value of N ′

0 is still dependent
on the size of the pre-existing cluster. Figures 5–6
therefore only includes sizes above 14 SIA for Fe and
30 SIA for W, to be able to use a single approximate
value of N ′

0 for all data. For Fe, we used N ′
0 = 0.2 and

for W, N ′
0 = 0.1. However, using N ′

0 = 0 for all cases
still results in a satisfactory agreement with the data.
The values of the cascade radii (rc) and the defect-free
FP count (Np) are provided in Appendix C.

Figures 7–8 show a few representative examples
of the defect production predicted by the analytical
model compared with the simulation data. The
shown examples include data from different types of
pre-existing cluster, different size, temperature, PKA
energy and interatomic potential. The shaded regions
highlight the statistical spread in the data, given by the
interquartile range of the median values. The values of
N0 are obtained from figures 3–4. In all cases in both
Fe and W, the model reproduces the simulation data
within the statistical uncertainty.
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Figure 9: Example of the difference between the
size of the final and the initial SIA cluster after an
overlapping cascade, illustrating the statistical spread
of the data. Blue data points are the results from
individual simulations, which are grouped into bins
with the mode, mean, and median values plotted. The
data are from 5 keV cascades on a 48 SIA 1/2〈1 1 1〉
loop at 0 K in Fe, with the M07-B potential.

5. Cascade-induced changes in cluster
morphology

5.1. Changes in cluster size

Figure 9 shows the difference in size between the final
and initial SIA cluster after overlapping cascades for
a typical case. The SIA cluster generally shrinks
as a result of the overlapping cascade. Additionally,
figure 9 shows the statistical spread in the collected
data, illustrating that even though the size of the SIA
cluster is most likely to decrease or remain constant,
the cluster can also grow by absorbing new SIAs at
distances of partial overlap.

The decrease in size in terms of numbers of
SIAs is almost constant for a given PKA energy,
regardless of size of the initial SIA cluster. This is
especially true in Fe for all interatomic potentials.
In W, a slight dependence on the SIA cluster size
is observed, although the statistical uncertainties are
large. Figure 10 shows the number of SIAs lost from
the cluster due to the overlapping cascade for different
cluster sizes. All cluster types and all interatomic
potentials show a similar behaviour, although the
maximum decrease in cluster size at full overlap
varies slightly between the potentials and the different
temperatures. The slight cascade-induced growth of
the SIA cluster at larger separation distances is more
pronounced in W, although the statistical spread is
large.
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Figure 10: Examples of the difference between the size
of the original pre-existing SIA cluster and the final
SIA cluster after an overlapping cascade. The Fe (a)
data are from 5 keV cascades on 〈1 0 0〉 loops at 300
K in the M07-B potential. The W (b) data are from
10 keV cascades on 1/2〈1 1 1〉 loops at 300 K in the
AT-ZN potential. The data points are slightly shifted
to make the error bars visible.
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Figure 11: Example of the observed probabilities of
forming different types of SIA clusters as functions of
separation distance in Fe. The data is from 3 keV
cascades overlapping with a 30 SIA 1/2〈1 1 1〉 loop at
300 K, for both the AM04 and M07-B potentials.

5.2. Changes in cluster type

Fully or partially overlapping cascades can trigger
changes in the type of the pre-existing cluster.
Figure 11 shows examples of the probabilities (fractions
of all simulations at each binned separation distance)
of forming different types of clusters in Fe due to
an overlapping cascade, compared between the AM04
and M07-B potentials. Only the pre-existing cluster
and its morphology after the overlapping cascade is
considered in the analysis. The cluster morphology is
separated into five categories, the three main types:
1/2〈1 1 1〉 loops, 〈1 0 0〉 loops, C15 clusters, and two
additional categories: mixed clusters, and ”None”,
the latter meaning that the cluster was not identified
as any specific type. Mixed clusters are any cluster
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(a) Mixed dislocation loop.

(b) Mixed dislocation loop
attached to small C15-like
clusters.

(c) 1/2〈1 1 1〉 loop segment
terminating in a C15 cluster.

(d) 〈1 0 0〉 loop attached to a
C15 cluster.

Figure 12: Examples of different ”mixed” interstitial
clusters observed in Fe after an overlapping cascade in
the M07-B potential. The self-interstitial atoms are
shown as bonded dumbbell configurations, i.e. two
atoms for each SIA. Orange atoms highlight C15-
like clusters, other SIAs are blue. Green lines are
1/2〈1 1 1〉 dislocation lines and magenta lines are 〈1 0 0〉
dislocations. The red arrows show the directions of the
Burgers vectors. All clusters contain roughly 50 SIAs
and are 1.5–2 nm in width.

identified as containing parts of more than one of
the above categories. Some examples of clusters
defined as mixed clusters in Fe are shown in figure 12.
These include dislocation loops with segments of both
Burgers vectors, dislocations that do not form closed
loops but instead terminate in a C15 cluster or any
other defect cluster, or dislocation loops attached to
C15 clusters. Figure 13 shows examples of mixed
clusters in W, which mainly are dislocation loops with
segments of both Burgers vectors. Similar complex
clusters were also previously observed in overlap of
high-energy cascades [17]. Tests showed that some of
these mixed clusters are unstable and rearrange into
perfect dislocation loops of either type after a short
annealing simulation. Other remained as ”mixed”
clusters even after annealing at 1000 K for 1 ns.
However, systematically assessing the stability of these
complex defect structures is beyond the scope of this
work.

The pre-existing cluster in figure 11 is a 1/2〈1 1 1〉
loop containing 30 SIAs. In the AM04 potential, the

(a) Intertwined 1/2〈1 1 1〉
loop.

(b) Mixed dislocation loop
with dividing 1/2〈1 1 1〉
screw segment.

(c) Mixed dislocation loop
network.

(d) Three-dimensional
mixed dislocation network.

Figure 13: Examples of different ”mixed” interstitial
clusters observed in W after an overlapping cascade in
the AT-ZN potential. Blue atoms are self-interstitial
atoms (shown as the centres of the Wigner-Seitz cells
they belong to). Green lines are 1/2〈1 1 1〉 dislocation
lines and magenta lines are 〈1 0 0〉 dislocations. The
red arrows show the directions of the Burgers vectors.
All clusters contain roughly 100 SIAs and are around
3 nm in width.

final cluster is a loop of same type in the majority
of the simulations, even in the case of full overlap.
At larger separation distances, the probability of
the pre-existing cluster surviving naturally approaches
unity. Perhaps most interesting is the probability of
forming a given cluster type at full overlap, i.e. when
the cascade completely dissolves the original cluster
and the final cluster type after recrystallisation is
dependent on other factors. In the case of the 30 SIA
1/2〈1 1 1〉 loop in figure 11, the probabilities at full
overlap differ noticeably between the two interatomic
potentials. In the M07-B potential, a fully overlapping
cascade results in a C15-like cluster or a 1/2〈1 1 1〉
loop with almost equal probability, while C15 clusters
only rarely form in the AM04 potential. The observed
probabilities agree well with the stabilities of the
different types of clusters predicted by the potentials.
In Appendix B, the formation energies of loops and C15
clusters are given as functions of the cluster size in the
different potentials. At 30 SIAs, the 1/2〈1 1 1〉 loop is
the most stable SIA cluster in the AM04 potential,
in contradiction with DFT results that predict the
C15 cluster to be the most stable SIA cluster up
to around 50 SIAs [19]. In the M07-B potential on
the other hand, the crossover in stability between the
C15 and 1/2〈1 1 1〉 loops occurs close to 30 SIAs, and
consequently the probability of forming C15 clusters
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Figure 14: Observed probabilities of forming different
types of SIA clusters as functions of separation
distance, for 5 keV cascades on a pre-existing 40 SIA
C15 cluster at 300 K in the M07-B potential.

is significantly higher and similar to the probability of
forming 1/2〈1 1 1〉 loops.

Figure 14 shows the cluster type probabilities as
functions of separation distance for a pre-existing 40-
SIA C15 cluster in the M07-B potential. At this
size, both dislocation loops and the C15 clusters have
similar formation energies (Appendix B), with the
1/2〈1 1 1〉 loop marginally lower in energy than the
other types. Consequently, the probabilities of forming
the different cluster types at full overlap are similar,
with a significant fraction of full-overlap simulations
leading to mixed clusters similar to those shown in
figure 12. At partial separation distances, the pre-
existing C15 cluster survives in the majority of the
cases. Nevertheless, partially overlapping cascades also
trigger transformations into both types of dislocation
loops with non-negligible probabilities.

In figure 15, we show the probabilities of forming
different cluster types for fully overlapping cascades
on both types of dislocation loops in Fe, compared
between the AM04 and M07-B potentials. The effect
of the higher stability of the C15 clusters compared
to loops in the M07-B potential is clear. In the
AM04 potential, C15-like clusters form in around 10%
of the full-overlap cases at cluster sizes of 30 SIAs
and below, but 1/2〈1 1 1〉 loops are always the most
likely surviving cluster type (except at very small
sizes, where the overlapping cascade typically splits
the cluster into small parts of only a few or single
SIAs). However, in the M07-B potential, C15 clusters
are the most frequent identifiable cluster type at sizes
below around 30 SIA, after which 1/2〈1 1 1〉 loops are
most likely to form. The crossover coincides with
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Figure 15: Observed probabilities of forming different
types of SIA clusters at full overlap, for 5 keV cascades
at 300 K and compared between the AM04 (a) and
M07-B (b) potentials. For filled data points, the pre-
existing cluster was a 1/2〈1 1 1〉 loop, and for unfilled
data points a 〈1 0 0〉 loop. The lines connect the
average values of both pre-existing loop types.
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Figure 16: Observed probabilities of forming different
types of SIA clusters at full overlap, for 5 keV cascades
at 300 K in the M07 potential. In figure (a), the
pre-existing clusters are dislocation loops (filled points
for pre-existing 1/2〈1 1 1〉 loops and unfilled points for
〈1 0 0〉 loops). In figure (b), the pre-existing clusters
are C15 clusters.

the crossover in formation energy at 0 K seen in
Appendix B. At larger pre-existing cluster sizes, the
probability of forming various mixed clusters similar to
those shown in figure 12 is also significant. Figure 16
shows the probabilities of forming different clusters in
full overlap on pre-existing loops compared with pre-
existing C15 clusters. The probabilities are similar
in both cases. The only significant difference is an
increased probability of forming mixed clusters, at the
expense of 1/2〈1 1 1〉 loops, in overlap with larger C15
clusters. Most of these mixed clusters contain small
parts recognisable as C15-like clusters attached to a
dislocation loop. Regardless of initial cluster type
and interatomic potential, 〈1 0 0〉 loops are formed
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Figure 17: Example of the observed probabilities of
forming different types of SIA clusters as functions of
separation distance in W. The data is from 10 keV
cascades overlapping with a 30 SIA 〈1 0 0〉 loop at 300
K in the AT-ZN potential.
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Figure 18: Example of the observed probabilities of
forming different types of SIA clusters as functions of
separation distance in W. The data is from 10 keV
cascades overlapping with a 30 SIA 〈1 0 0〉 loop at 300
K in the DND-BN (a) and M4-S (b) potentials.

with probabilities around 10–20% at sizes above 20
SIAs. Previous simulation results of overlap of 50 keV
cascades showed similar probabilities for 〈1 0 0〉 loop
formation [33].

The formation of different types of clusters in
W follow a similar trend as in Fe. That is, the
most likely cluster type to form as a result of
an overlapping cascade is the cluster with lowest
formation energy predicted by the potential, although
clusters higher in energy are also seen in non-negligible
fractions. However, the relative stability between the
two dislocation loops differ significantly between the
interatomic potentials. As shown in Appendix B, only
the AT-ZN potential correctly predicts 1/2〈1 1 1〉 loops
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Figure 19: Observed probabilities of forming different
types of SIA clusters at full overlap, for 10 keV cascades
at 300 K in the AT-ZN potential. For filled data points,
the pre-existing cluster was a 1/2〈1 1 1〉 loop, and for
unfilled data points a 〈1 0 0〉 loop. The lines connect
the average values of both pre-existing loop types.

to be lower in energy than 〈1 0 0〉 loops. Both the DND-
BN and the M4-S potentials contradict DFT data and
show a crossover at around 20–30 SIAs, above which
〈1 0 0〉 loops become more stable. Consequently, both
the latter potentials show high probabilities of forming
〈1 0 0〉 loops, while the AT-ZN potential produces
1/2〈1 1 1〉 loops in the majority of the overlapping
cascades, regardless of the type of the initial pre-
existing cluster. This is illustrated for 10 keV cascades
overlapping with 30 SIA 〈1 0 0〉 loops in figures 17–
18. For the DND-BN potential, this is close to the
crossover in the relative loop stability, and figure 18
still shows slightly higher fractions of 1/2〈1 1 1〉 loops
than 〈1 0 0〉 loops. In contrast, the M4-S potential
only rarely produces 1/2〈1 1 1〉 loops. At larger sizes,
〈1 0 0〉 loops are the most likely outcome in both the
DND-BN and the M4-S potentials, while the AT-ZN
potential predominantly produces 1/2〈1 1 1〉 loops, as
expected based on the relative formation energies. This
is similar to previous simulations of high-energy (150
keV) cascades in defect-free W [25], where the AT-ZN
potential mainly produced 1/2〈1 1 1〉 loops, while both
types were frequently seen in the DND-BN potential.

Figure 19 shows the probabilities of forming
different cluster at full overlap as a function of pre-
existing cluster size in the AT-ZN potential. Due to
the incorrect relative stability of loops in the DND-BN
and M4-S potentials, we only discuss the results from
the AT-ZN potential. Regardless of initial loop type,
the resulting cluster after a fully overlapping cascade
is roughly independent on size. For all sizes, perfect
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1/2〈1 1 1〉 loops are the results of about half of the
simulations, and 〈1 0 0〉 loops in around 10–20% of the
cases. Interestingly, large fractions (30–40%) of the
simulations also end with formation mixed dislocation
loops similar to the examples shown in figure 13.
All mixed clusters are highly immobile, containing
segments of both 〈1 0 0〉 and 1/2〈1 1 1〉 dislocation lines
of both screw and edge type.

6. Summary and conclusions

From the large number of molecular dynamics
simulations performed in this study, a fairly complete
picture of the effects of cascade overlap with pre-
existing self-interstitial clusters in bcc metals has
been obtained. We focused on cascade energies well
below the subcascade threshold, overlapping with
interstitial clusters smaller than the disordered cascade
region. The sizes and types of the pre-existing clusters
correspond to clusters typically formed directly in
cascades. Under these conditions, the observed effects
of cascade overlap with interstitial clusters in iron and
tungsten can be summarised as follows.

(i) The number of new Frenkel pairs is reduced to
almost zero when a cascade fully overlaps with a
SIA cluster of size smaller, but comparable to the
disordered cascade region.

(ii) The number of new Frenkel pairs created as a
function of the distance between the centre of
the disordered cascade region and the pre-existing
interstitial cluster follows a simple analytical
sigmoid function. The same function, containing
no fitting parameters, can be used to estimate
the expected number of Frenkel pairs in cascade
overlap in both Fe and W, using only data readily
obtained from cascades in the defect-free material.
The analytical model can be used to introduce
cascade-overlap effects in higher-scale simulation
methods of radiation damage.

(iii) The size of the pre-existing interstitial cluster
decreases as a result of a fully overlapping cascade.
The decrease in number of interstitials in the
cluster was found to be mostly dependent on PKA
energy and temperature, with no dependence on
the size of the initial cluster. The cascade-induced
changes in cluster size is strongly stochastic, and
an interstitial cluster can also absorb a small
number of new interstitials created by a nearby
cascade that is not, or is only slightly, overlapping.

(iv) The Burgers vector or type of the pre-existing
cluster may change as a result of cascade overlap.
Although the lowest-energy cluster type is the
most likely to form, higher-energy clusters are
also formed with significant probabilities. Most

notably, in Fe, cascade-induced transformations
from C15 clusters and 1/2〈1 1 1〉 loops into
〈1 0 0〉 dislocation loops are observed with 10–
20% probabilities at full overlap. The surviving
cluster type is, however, strongly dependent on
the interatomic potential. Many interatomic
potentials fail to reproduce the relative stability
of SIA clusters, which as our results show have
a direct effect on the outcome of overlapping
cascades. Our results therefore emphasise the
continuous demand for more accurate interatomic
potentials.

(v) We found that the C15 cluster is highly stable
in Fe, and survives an overlapping cascade in
the majority of cases. Nevertheless, as the
size of the C15 cluster increases, cascade-induced
collapse into either 1/2〈1 1 1〉 or 〈1 0 0〉 dislocation
loops become increasingly likely. This indicates
that the previously proposed mechanism of 〈1 0 0〉
loop formation from C15 collapse in iron can
be triggered by a nearby cascade at sizes much
smaller than the critical sizes observed in pure
growth simulations [31]. Furthermore, given that
the stability of C15 clusters in all interatomic
potentials are underestimated compared to ab
initio data, formation and transformation of
clusters into C15 is likely even more frequent than
observed here.

(vi) The relatively frequent observations of 〈1 0 0〉
loops in our simulations indicate that, regardless
of mechanism, cascade overlap is likely to
accelerate the formation of 〈1 0 0〉 loops. This
is supported by experimental observations of
increased densities of 〈1 0 0〉 loops at higher
doses [23].

(vii) In W, cascade-induced changes between 1/2〈1 1 1〉
and 〈1 0 0〉 loops are also frequently observed, but
the differences between predictions of different
interatomic potentials are large.
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Figure B1: Formation energies of different types of
SIA clusters in Fe as predicted by the interatomic
potentials.

Appendix A. Point defect energies in the
interatomic potentials

Table A1 lists formation, migration, and threshold dis-
placement energies given by the interatomic potentials
used in the cascade simulations, and compared to den-
sity functional theory or experimental results. The
formation energies of the self-interstitial and vacancy
were calculated following a minimisation of energy and
pressure. The migration energies were obtained us-
ing the nudged elastic band method as implemented
in ASE [54]. The threshold displacement energies are
taken from earlier studies [21, 42, 44].

Appendix B. Formation energies of SIA
clusters in Fe and W

Figures B1 and B2 show the formation energies of the
different SIA clusters in Fe and W as given by the
interatomic potentials used in the cascade simulations.
Note that the M07 and M07-B potentials predict
identical formation energies, since the potentials only
differ at distances shorter than those present in any
stable SIA cluster. The systems containing the
dislocation loop or C15 cluster were minimised in
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Figure B2: Formation energies of SIA dislocation loops
in W as predicted by the interatomic potentials.

energy and pressure using the conjugate gradient
algorithm implemented in lammps [60]. The lines
connecting the data point are fits to the corresponding
formation energy scaling laws discussed in [19].
For dislocation loops, the formation energy scales
according to

Ef = a0
√
N ln(N) + a1

√
N + a2, (B.1)

where N is the number of interstitial atoms (or
vacancies) in the dislocation loop, and ai are used as
fitting parameters. For C15 clusters, the formation
energy scales as

Ef = a0N
2/3 + a1N + a2. (B.2)
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Table A1: Formation energies (Ef), migration energies (Em), and threshold displacement energies (Ed) in
eV, predicted by the different interatomic potentials and compared to density functional theory (DFT) and
experimental data. Only the energies of the lowest-energy interstitial configuration are given (〈1 1 0〉 dumbbell
in Fe and 〈1 1 1〉 dumbbell in W).

Fe
DFT AM04 M07 M07-B

ESIA
f 3.64–4.25a,b 3.52 3.69 3.69

Evac
f 2.09b 1.71 2.10 2.10

ESIA
m 0.34c 0.31 0.30 0.30

Evac
m 0.67c 0.64 0.69 0.69

E
〈1 0 0〉
d 21b 17d 27d 17d

E
〈1 1 0〉
d 43b 33d 51d 39d

E
〈1 1 1〉
d 20b 29d 43d 33d

Eavg
d 32b 39.6± 0.2d 65.5± 0.3d 39.2± 0.2d

W
DFT/exp. AT-ZN DND-BN M4-S

ESIA
f 9.55e, 10.53f 7.77 9.45 10.39

Evac
f 3.56e, 3.49f 3.63 3.56 3.82

ESIA
m 0.05e, 0.002g 0.032 0.012 0.023

Evac
m 1.78e 1.44 2.06 1.83

E
〈1 0 0〉
d 42± 1h 57i 41j 43i

E
〈1 1 0〉
d > 70h 103i 93j 71i

E
〈1 1 1〉
d 44± 1h 89i 41j 65i

a Ref. [37] b Ref. [55] c Ref. [56] d Ref. [21]
e Ref. [57] f Ref. [43] g Ref. [58] h Ref. [59]
i Ref. [44] j Ref. [42]

In Fe, both potentials correctly predict the C15
cluster to be lowest in energy at small sizes. However,
the differences in energy between the clusters in AM04
potential are very small, and loops become more stable
at around 20 SIA. In the M07(-B) potentials, the
crossover from C15 to 1/2〈1 1 1〉 loops is at around
30 SIA, and to 〈1 0 0〉 loops at around 40 SIA. Note,
however, that the number of different possible C15
configurations grows quickly with size, and here we
only considered a few configurations for each size
(figure B1 only shows the lowest-energy configurations
at each size). The crossovers might therefore be
underestimated. However, approximate values are
sufficient for interpreting the cascade-overlap results
presented here, and a detailed benchmarking of
interatomic potentials for SIA clusters is beyond the
scope of this work. The crossover between C15 and
1/2〈1 1 1〉 loops is predicted to be around 51 SIA based
on density functional theory data [19], and around 91
SIA for C15 and 〈1 0 0〉 loops. The M07(-B) potentials
also predict a crossover between the the two loop types
at around 80 SIA. This contradicts density functional
theory data, which predicts the 1/2〈1 1 1〉 loops to be
lower in energy at all sizes [19].

As in Fe, 1/2〈1 1 1〉 loops in W should also be lower
in energy than 〈1 0 0〉 loops at all sizes [19]. Among
the interatomic potentials used in this study, only
the AT-ZN potential reproduces this trend, as seen in
figure B2. The crossover between the loop types is at
around 25 SIA in the DND-BN potential and at around
20 SIA in the M4-S potential, above which 〈1 0 0〉 loops
incorrectly are more stable.

Appendix C. Data from cascades in defect-free
Fe and W

Table C1 lists the data extracted from cascades in
defect-free Fe and W using the same PKA energies,
temperatures, and interatomic potentials as in the
overlapping cascades. The data is used as input
parameters for the analytical model of Frenkel-pair
production in cascade overlap.
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