33 research outputs found

    Detection of compact objects by means of gravitational lensing in binary systems

    Get PDF
    We consider the gravitational magnification of light for binary systems containing two compact objects: white dwarfs, a white dwarf and a neutron star or a white dwarf and a black hole. Light curves of the flares of the white dwarf caused by this effect were built in analytical approximations and by means of numerical calculations. We estimate the probability of the detection of these events in our Galaxy for different types of binaries and show that gravitational lensing provides a tool for detecting such systems. We propose to use the facilities of the Sloan Digital Sky Survey (SDSS) to search for these flares. It is possible to detect several dozens compact object pairs in such a programme over 5 years. This programme is apparently the best way to detect stellar mass black holes with open event horizons.Comment: 15 pages, 11 figures; Accepted for publication in Astronomy & Astrophysic

    Using microlensed quasars to probe the structure of the Milky Way

    Full text link
    This paper presents an investigation into the gravitational microlensing of quasars by stars and stellar remnants in the Milky Way. We present predictions for the all-sky microlensing optical depth, time-scale distributions and event rates for future large-area sky surveys. As expected, the total event rate increases rapidly with increasing magnitude limit, reflecting the fact that the number density of quasars is a steep function of magnitude. Surveys such as Pan-STARRS and LSST should be able to detect more than ten events per year, with typical event durations of around one month. Since microlensing of quasar sources suffers from fewer degeneracies than lensing of Milky Way sources, they could be used as a powerful tool for recovering the mass of the lensing object in a robust, often model-independent, manner. As a consequence, for a subset of these events it will be possible to directly `weigh' the star (or stellar remnant) that is causing the lensing signal, either through higher order microlensing effects and/or high-precision astrometric observations of the lens star (using, for example, Gaia or SIM-lite). This means that such events could play a crucial role in stellar astronomy. Given the current operational timelines for Pan-STARRS and LSST, by the end of the decade they could potentially detect up to 100 events. Although this is still too few events to place detailed constraints on Galactic models, consistency checks can be carried out and such samples could lead to exciting and unexpected discoveries.Comment: 11 pages, 8 figures. MNRAS (in press). Minor revisions according to referee's report; mainly presentational issues and clarification of a few items in the discussion; results and conclusions remain unchange

    Scattering of gravitational radiation

    Get PDF
    Aims.The effect of gravitational microlensing on the intensity of gravitational radiation as it propagates through an inhomogeneous medium is considered. Lensing by both stars and a power law spectrum of density perturbations is examined. Methods.The long wavelengths characteristic of gravitational radiation mandate a statistical, physical-optics approach to treat the effect of the lensing. Results.A model for the mass power spectrum of a starfield, including the effects of clustering and allowing for a distribution of stellar masses, is constructed and used to determine both the amplitude of fluctuations in the gravitational wave strain and its associated temporal fluctuation spectrum. For a uniformly distributed starfield the intensity variance scales linearly with stellar density, σ, but is enhanced by a factor \gaσrF2\sigma r_{\rm F}^2 when clustering is important, where rF is the Fresnel scale. The effect of lensing by a power law mass spectrum, applicable to lensing by small scale fluctuations in gas and dark matter, is also considered. For power law mass density spectra with indices steeper than -2 the wave amplitude exhibits rms fluctuations 1.3ΔΣ21/4(Deff/1Gpc)1/21.3 \langle \Delta \Sigma^2\rangle^{1/4} (D_{\rm eff}/1\,{\rm Gpc})^{1/2} %, where ΔΣ2\langle \Delta \Sigma^2 \rangle is the variance in the mass surface density measured in M2pc4M_\odot^2 \,{\rm pc}^{-4} and Deff is the effective distance to the lensing medium. For shallower spectra the amplitude of the fluctuations depends additionally on the inner length scale and power law index of the density fluctuations. The intensity fluctuations are dominated by temporal fluctuations on long timescales. For lensing material moving at a speed v across the line of sight the fluctuation timescale exceeds v1(Deffλ)1/2v^{-1} (D_{\rm eff} \lambda)^{1/2}. Lensing by small scale structure induces at most ≈15% rms variations if the line of sight to a gravitational wave source intersects a region with densities ~100 Mpc2100~M_\odot\,{\rm pc}^{-2}, which are typically encountered in the vicinity of galaxy clusters

    Notes on Hidden Mirror World

    Full text link
    A few remarks on Dark Matter (DM) models are presented. An example is Mirror Matter which is the oldest but still viable DM candidate, perhaps not in the purest form. It can serve as a test-bench for other analogous DM models, since the properties of macroscopic objects are quite firmly fixed for Mirror Matter. A pedagogical derivation of virial theorem is given and it is pointed out that concepts of virial velocity or virial temperature are misleading for some cases. It is shown that the limits on self-interaction cross-sections derived from observations of colliding clusters of galaxies are not real limits for individual particles if they form macroscopic bodies. The effect of the heating of interstellar medium by Mirror Matter compact stars is very weak but may be observable. The effect of neutron star heating by accretion of M-baryons may be negligible. Problems of MACHOs as Mirror Matter stars are touched upon.Comment: Latex, revtex, 24 pages, 1 figure, references updated and adde

    Large microlensing history and perspectives

    No full text
    corecore