31 research outputs found

    Exploring constituency-level estimates for the 2017 British general election

    Get PDF
    Most opinion polls conducted during British general election campaigns report on each party’s estimated national vote share. Although of considerable interest, these data do not put the spotlight on the marginal seats, the constituencies targeted by the parties for intensive canvassing; these are where the contest for a majority in the House of Commons is won and lost. There have been some polls covering those constituencies as a whole, but very few of individual constituencies so there was very little reporting of the outcome for each party in those individual constituencies. That changed with the 2017 general election, when three analysts published estimates on the internet of each party’s vote share separately for each constituency and with those data predicted which party would win each seat. This paper explores the veracity of those estimates, finding that although in general terms they accurately represented the relative position of each constituency in the share of each party’s votes, nevertheless their estimates of which marginal seats would be won by each were not as accurate. The implications of such polls, especially as their predictive ability is improved, is discussed

    Synthesis and styrene copolymerization of dimethyl and dimethoxy ring-substituted 2-methoxyethyl phenylcyanoacrylates

    No full text
    Novel methyl and methoxy ring-disubstituted 2-methoxyethyl phenylcyanoacrylates, RPhCH=C(CN)CO2CH2CH2OCH3 (where R is 2,3-dimethyl, 2,4-dimethyl, 2,5-dimethyl, 2,6-dimethyl, 3,4-dimethyl, 3,5-dimethyl, 2,3-dimethoxy, 2,4-dimethoxy, 2,5-dimethoxy, 2,6-dimethoxy, 3,4-dimethoxy, 3,5-dimethoxy) were prepared and copolymerized with styrene. The acrylates were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and 2-methoxyethyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C NMR. All the acrylates were copolymerized with styrene in solution with radical initiation (ABCN) at 70C. The compositions of the copolymers were calculated from nitrogen analysis

    Chronic alcohol exposure negatively impacts the physiological and molecular parameters of the renal biotin reabsorption process

    No full text
    Normal body homeostasis of biotin is critically dependent on its renal recovery by kidney proximal tubular epithelial cells, a process that is mediated by the sodium-dependent multivitamin transporter (SMVT; a product of the SLC5A6 gene). Chronic ethanol consumption interferes with the renal reabsorption process of a variety of nutrients, including water-soluble vitamins. To date, however, there is nothing known about the effect of chronic alcohol feeding on physiological and molecular parameters of the renal biotin reabsorption process. We addressed these issues using rats and transgenic mice carrying the human SLC5A6 (P1P2) 5′-regulatory region as an in vivo model systems of alcohol exposure, and cultured human renal proximal tubular epithelial HK-2 cells chronically exposed to alcohol as an in vitro model of alcohol exposure. The [3H]biotin uptake results showed that chronic ethanol feeding in rats leads to a significant inhibition in carrier-mediated biotin transport across both renal brush border and basolateral membrane domains. This inhibition was associated with a marked reduction in the level of expression of SMVT protein, mRNA, and heterogenous nuclear RNA (hnRNA). Furthermore, studies with transgenic mice carrying the SLC5A6 5′-regulatory region showed that chronic alcohol feeding leads to a significant decrease in promoter activity. Studies with HK-2 cells chronically exposed to alcohol again showed a marked reduction in carrier-mediated biotin uptake, which was associated with a significant reduction in promoter activity of the human SLC5A6 5′-regulatory region. These findings demonstrate for the first time that chronic ethanol feeding inhibits renal biotin transport and that this effect is, at least in part, being exerted at the transcriptional level

    Geographic variation in opinions on climate change at state and local scales in the USA

    No full text
    Addressing climate change in the United States requires enactment of national, state and local mitigation and adaptation policies. The success of these initiatives depends on public opinion, policy support and behaviours at appropriate scales. Public opinion, however, is typically measured with national surveys that obscure geographic variability across regions, states and localities. Here we present independently validated high-resolution opinion estimates using a multilevel regression and poststratification model. The model accurately predicts climate change beliefs, risk perceptions and policy preferences at the state, congressional district, metropolitan and county levels, using a concise set of demographic and geographic predictors. The analysis finds substantial variation in public opinion across the nation. Nationally, 63% of Americans believe global warming is happening, but county-level estimates range from 43 to 80%, leading to a diversity of political environments for climate policy. These estimates provide an important new source of information for policymakers, educators and scientists to more effectively address the challenges of climate change

    Role of Middle T-Small T in the Lytic Cycle of Polyomavirus: Control of the Early-to-Late Transcriptional Switch and Viral DNA Replication

    No full text
    A comparative analysis of the lytic cycle of wild-type polyomavirus and middle T and small T defective mutants was carried out in the A2 genetic background. The results contrast with those obtained in comparisons between the hr-t type and their middle-T small-T-producing partners as previously described (20). The A2-derived mutants were found to share the maturation defect previously described for the hr-t mutants. However, their defect in DNA replication was more acute, resulting in a 5- to 100-fold decrease in the accumulation of viral genomes. Furthermore, their gene expression pattern was affected. A2-derived mutants displayed an early defect resulting in a 4- to 16-h delay in the expression of large T, and an alteration of the early-to-late transcriptional switch. In wild-type A2 infection, this switch is characterized by a large increase in the accumulation of early transcripts followed by late transcripts after the appearance of middle T and small T proteins and the onset of viral DNA replication (L. Chen and M. M. Fluck, J. Virol. 75: 8368–8379, 2001). In the mutant infection, increases in both classes of transcripts were delayed and reduced, but the effect on early transcripts was more pronounced. As has been described previously for the hr-t mutants (E. Goldman, J. Hattori, and T. Benjamin, Cell 13:505–513, 1979), the magnitude of these defects depended upon experimental conditions. Experiments using cytosine β-arabinofuranoside to reduce genome amplification suggest that the effect of middle T-small T on the transcriptional switch is not solely mediated by the effect of these protein(s) on increasing the number of templates. These data provide the first direct demonstration of an effect of middle T and/or small T in the viral transcription pattern during viral infection. The results agree with previous results obtained with plasmid reporters and with our understanding that the downstream targets of the middle T signaling pathway include three transcription factors that have binding sites in the enhancer domain that play a key regulatory role in the expression of the viral genes
    corecore