4,826 research outputs found

    Hawking radiation from "phase horizons" in laser filaments?

    Full text link
    Belgiorno et al have reported on experiments aiming at the detection of (the analogue of) Hawking radiation using laser filaments [F. Belgiorno et al, Phys. Rev. Lett. 105, 203901 (2010)]. They sent intense focused Bessel pulses into a non-linear dielectric medium in order to change its refractive index via the Kerr effect and saw creation of photons orthogonal to the direction of travel of the pluses. Since the refractive index change in the pulse generated a "phase horizon" (where the phase velocity of these photons equals the pulse speed), they concluded that they observed the analogue of Hawking radiation. We study this scenario in a model with a phase horizon and a phase velocity very similar to that of their experiment and find that the effective metric does not quite correspond to a black hole. The photons created in this model are not due to the analogue of black hole evaporation but have more similarities to cosmological particle creation. Nevertheless, even this effect cannot explain the observations -- unless the pulse has significant small scale structure in both the longitudinal and transverse dimensions.Comment: 13 pages RevTeX, 2 figure

    Breaking of the overall permutation symmetry in nonlinear optical susceptibilities of one-dimensional periodic dimerized Huckel model

    Full text link
    Based on infinite one-dimensional single-electron periodic models of trans-polyacetylene, we show analytically that the overall permutation symmetry of nonlinear optical susceptibilities is, albeit preserved in the molecular systems with only bound states, no longer generally held for the periodic systems. The overall permutation symmetry breakdown provides a fairly natural explanation to the widely observed large deviations of Kleinman symmetry for periodic systems in off-resonant regions. Physical conditions to experimentally test the overall permutation symmetry break are discussed.Comment: 7 pages, 1 figur

    The physical significance of the Babak-Grishchuk gravitational energy-momentum tensor

    Full text link
    We examine the claim of Babak and Grishchuk [1] to have solved the problem of localising the energy and momentum of the gravitational field. After summarising Grishchuk's flat-space formulation of gravity, we demonstrate its equivalence to General Relativity at the level of the action. Two important transformations are described (diffeomorphisms applied to all fields, and diffeomorphisms applied to the flat-space metric alone) and we argue that both should be considered gauge transformations: they alter the mathematical representation of a physical system, but not the system itself. By examining the transformation properties of the Babak-Grishchuk gravitational energy-momentum tensor under these gauge transformations (infinitesimal and finite) we conclude that this object has no physical significance.Comment: 10 pages. Submitted to Phys. Rev. D; acknowledgements adjuste

    Linear response functions for a vibrational configuration interaction state

    Get PDF
    Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approac

    On the Non-invasive Measurement of the Intrinsic Quantum Hall Effect

    Full text link
    With a model calculation, we demonstrate that a non-invasive measurement of intrinsic quantum Hall effect defined by the local chemical potential in a ballistic quantum wire can be achieved with the aid of a pair of voltage leads which are separated by potential barriers from the wire. B\"uttiker's formula is used to determine the chemical potential being measured and is shown to reduce exactly to the local chemical potential in the limit of strong potential confinement in the voltage leads. Conditions for quantisation of Hall resistance and measuring local chemical potential are given.Comment: 16 pages LaTex, 2 post-script figures available on reques

    Unsupervised machine learning of integrated health and social care data from the Macmillan Improving the Cancer Journey service in Glasgow

    Get PDF
    Background: Improving the Cancer Journey (ICJ) was launched in 2014 by Glasgow City Council and Macmillan Cancer Support. As part of routine service, data is collected on ICJ users including demographic and health information, results from holistic needs assessments and quality of life scores as measured by EQ-5D health status. There is also data on the number and type of referrals made and feedback from users on the overall service. By applying artificial intelligence and interactive visualization technologies to this data, we seek to improve service provision and optimize resource allocation.Method: An unsupervised machine-learning algorithm was deployed to cluster the data. The classical k-means algorithm was extended with the k-modes technique for categorical data, and the gap heuristic automatically identified the number of clusters. The resulting clusters are used to summarize complex data sets and produce three-dimensional visualizations of the data landscape. Furthermore, the traits of new ICJ clients are predicted by approximately matching their details to the nearest existing cluster center.Results: Cross-validation showed the model’s effectiveness over a wide range of traits. For example, the model can predict marital status, employment status and housing type with an accuracy between 2.4 to 4.8 times greater than random selection. One of the most interesting preliminary findings is that area deprivation (measured through Scottish Index of Multiple Deprivation-SIMD) is a better predictor of an ICJ client’s needs than primary diagnosis (cancer type).Conclusion: A key strength of this system is its ability to rapidly ingest new data on its own and derive new predictions from those data. This means the model can guide service provision by forecasting demand based on actual or hypothesized data. The aim is to provide intelligent person-centered recommendations. The machine-learning model described here is part of a prototype software tool currently under development for use by the cancer support community.Disclosure: Funded by Macmillan Cancer Support</p
    • …
    corecore