3,774 research outputs found

    Fluctuation dynamo amplified by intermittent shear bursts in convectively driven magnetohydrodynamic turbulence

    Get PDF
    Intermittent large-scale high-shear flows are found to occur frequently and spontaneously in direct numerical simulations of statistically stationary turbulent Boussinesq magnetohydrodynamic (MHD) convection. The energetic steady-state of the system is sustained by convective driving of the velocity field and small-scale dynamo action. The intermittent emergence of flow structures with strong velocity and magnetic shearing generates magnetic energy at an elevated rate over time-scales longer than the characteristic time of the large-scale convective motion. The resilience of magnetic energy amplification suggests that intermittent shear-bursts are a significant driver of dynamo action in turbulent magnetoconvection

    Adherence to secondary stroke prevention strategies - Results from the German stroke data bank

    Get PDF
    Only very limited data are available concerning patient adherence to antithrombotic medication intended to prevent a recurrent stroke. Reduced adherence and compliance could significantly influence the effects of any stroke prevention strategies. This study from a large stroke data bank provides representative data concerning the rate of stroke victims adhering to their recommended preventive medication. During a 2-year period beginning January 1, 1998, all patients with acute stroke or TIA in 23 neurological departments with an acute stroke unit were included in the German Stroke Data Bank. Data were collected prospectively, reviewed, validated and processed in a central data management unit. Only 12 centers with a follow-up rate of 80% or higher were included in this evaluation. 3,420 patients were followed up after 3 months, and 2,640 patients were followed up one year after their stroke. After one year, 96% of all patients reported still adhere to at least one medical stroke prevention strategy. Of the patients receiving aspirin at discharge, 92.6% reported to use that medication after 3 months and 84% after one year, while 81.6 and 61.6% were the respective figures for clopidogrel, and 85.2 and 77.4% for oral anticoagulation. Most patients who changed medication switched from aspirin to clopidogrel. Under the conditions of this observational study, adherence to stroke prevention strategies is excellent. The highest adherence rate is noticed for aspirin and oral anticoagulation. After one year, very few patients stopped taking stroke preventive medication. Copyright (C) 2003 S. Karger AG, Basel

    Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection

    Get PDF
    We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.Comment: 18 pages, 10 figures, preprin

    Best practice in undertaking and reporting health technology assessments : Working Group 4 report

    Get PDF
    [Executive Summary] The aim of Working Group 4 has been to develop and disseminate best practice in undertaking and reporting assessments, and to identify needs for methodologic development. Health technology assessment (HTA) is a multidisciplinary activity that systematically examines the technical performance, safety, clinical efficacy, and effectiveness, cost, costeffectiveness, organizational implications, social consequences, legal, and ethical considerations of the application of a health technology (18). HTA activity has been continuously increasing over the last few years. Numerous HTA agencies and other institutions (termed in this report “HTA doers”) across Europe are producing an important and growing amount of HTA information. The objectives of HTA vary considerably between HTA agencies and other actors, from a strictly political decision making–oriented approach regarding advice on market licensure, coverage in benefits catalogue, or investment planning to information directed to providers or to the public. Although there seems to be broad agreement on the general elements that belong to the HTA process, and although HTA doers in Europe use similar principles (41), this is often difficult to see because of differences in language and terminology. In addition, the reporting of the findings from the assessments differs considerably. This reduces comparability and makes it difficult for those undertaking HTA assessments to integrate previous findings from other HTA doers in a subsequent evaluation of the same technology. Transparent and clear reporting is an important step toward disseminating the findings of a HTA; thus, standards that ensure high quality reporting may contribute to a wider dissemination of results. The EUR-ASSESS methodologic subgroup already proposed a framework for conducting and reporting HTA (18), which served as the basis for the current working group. New developments in the last 5 years necessitate revisiting that framework and providing a solid structure for future updates. Giving due attention to these methodologic developments, this report describes the current “best practice” in both undertaking and reporting HTA and identifies the needs for methodologic development. It concludes with specific recommendations and tools for implementing them, e.g., by providing the structure for English-language scientific summary reports and a checklist to assess the methodologic and reporting quality of HTA reports

    Defect Chaos of Oscillating Hexagons in Rotating Convection

    Full text link
    Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the bandcenter these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the bandcenter a transition to a frozen vortex state is found.Comment: 4 pages, 6 figures. Fig. 3a with lower resolution no

    Selecting a single orientation for millimeter sized graphene sheets

    Get PDF
    We have used Low Energy Electron Microscopy (LEEM) and Photo Emission Electron Microscopy (PEEM) to study and improve the quality of graphene films grown on Ir(111) using chemical vapor deposition (CVD). CVD at elevated temperature already yields graphene sheets that are uniform and of monatomic thickness. Besides domains that are aligned with respect to the substrate, other rotational variants grow. Cyclic growth exploiting the faster growth and etch rates of the rotational variants, yields films that are 99 % composed of aligned domains. Precovering the substrate with a high density of graphene nuclei prior to CVD yields pure films of aligned domains extending over millimeters. Such films can be used to prepare cluster-graphene hybrid materials for catalysis or nanomagnetism and can potentially be combined with lift-off techniques to yield high-quality, graphene based electronic devices
    • 

    corecore