4 research outputs found

    The GA4GH Phenopacket schema defines a computable representation of clinical data.

    No full text
    n the clinical domain, substantial work has been dedicated to the development of computational phenotypes.1 Traditionally, these approaches have largely relied on rule-based methods and large sources of clinical data to identify cohorts of patients with or without a specific disease.2–5 However, they were not developed to enable deep phenotyping of abnormalities, to facilitate computational analysis of interpatient phenotypic similarity, or to support computational decision support. To address this, the Global Alliance for Genomics and Health6 (GA4GH) has developed the Phenopacket schema, which supports exchange of computable longitudinal case-level phenotypic information for diagnosis of and research on all types of disease, including Mendelian and complex genetic diseases, cancer, and infectious diseases. A Phenopacket characterizes an individual person or biosample, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments (Fig 1). The Phenopacket software is available at https://github.com/phenopackets/

    The RD-Connect Genome-Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases.

    No full text
    Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing and analysis of standardised genome-phenome data within a collaborative environment. Authorised clinicians and researchers submit pseudonymised phenotypic profiles encoded using the Human Phenotype Ontology, and raw genomic data which is processed through a standardised pipeline. After an optional embargo period, the data is shared with other platform users, with the objective that similar cases in the system and queries from peers may help diagnose the case. Additionally, the platform enables bidirectional discovery of similar cases in other databases from the Matchmaker Exchange network. To facilitate genome-phenome analysis and interpretation by clinical researchers, the RD-Connect GPAP provides a powerful user-friendly interface and leverages tens of information sources. As a result, the resource has already helped diagnose hundreds of rare disease patients and discover new disease causing genes

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    No full text
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    An integrated encyclopedia of DNA elements in the human genome.

    Get PDF
    The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research
    corecore