102 research outputs found

    Resting state functional connectivity provides mechanistic predictions of future changes in sedentary behavior

    Get PDF
    Sedentary behaviors are increasing at the cost of millions of dollars spent in health care and productivity losses due to physical inactivity-related deaths worldwide. Understanding the mechanistic predictors of sedentary behaviors will improve future intervention development and precision medicine approaches. It has been posited that humans have an innate attraction towards effort minimization and that inhibitory control is required to overcome this prepotent disposition. Consequently, we hypothesized that individual differences in the functional connectivity of brain regions implicated in inhibitory control and physical effort decision making at the beginning of an exercise intervention in older adults would predict the change in time spent sedentary over the course of that intervention. In 143 healthy, low-active older adults participating in a 6-month aerobic exercise intervention (with three conditions: walking, dance, stretching), we aimed to use baseline neuroimaging (resting state functional connectivity of two a priori defined seed regions), and baseline accelerometer measures of time spent sedentary to predict future pre-post changes in objectively measured time spent sedentary in daily life over the 6-month intervention. Our results demonstrated that functional connectivity between (1) the anterior cingulate cortex and the supplementary motor area and (2) the right anterior insula and the left temporoparietal/temporooccipital junction, predicted changes in time spent sedentary in the walking group. Functional connectivity of these brain regions did not predict changes in time spent sedentary in the dance nor stretch and tone conditions, but baseline time spent sedentary was predictive in these conditions. Our results add important knowledge toward understanding mechanistic associations underlying complex out-of-session sedentary behaviors within a walking intervention setting in older adults

    Standard‐space atlas of the viscoelastic properties of the human brain

    Get PDF
    Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast-based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM-152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross-center comparisons

    Heritability Estimation of Reliable Connectomic Features*

    Get PDF
    Brain imaging genetics is an emerging research field to explore the underlying genetic architecture of brain structure and function measured by different imaging modalities. However, not all the changes in the brain are a consequential result of genetic effect and it is usually unknown which imaging phenotypes are promising for genetic analyses. In this paper, we focus on identifying highly heritable measures of structural brain networks derived from diffusion weighted imaging data. Using the twin data from the Human Connectome Project (HCP), we evaluated the reliability of fractional anisotropy measure, fiber length and fiber number of each edge in the structural connectome and seven network level measures using intraclass correlation coefficients. We then estimated the heritability of those reliable network measures using SOLAR-Eclipse software. Across all 64,620 network edges between 360 brain regions in the Glasser parcellation, we observed ~5% of them with significantly high heritability in fractional anisotropy, fiber length or fiber number. All the tested network level measures, capturing the network integrality, segregation or resilience, are highly heritable, with variance explained by the additive genetic effect ranging from 59% to 77%

    Amphetamine modulates brain signal variability and working memory in younger and older adults

    No full text
    Better-performing younger adults typically express greater brain signal variability relative to older, poorer performers. Mechanisms for age and performance-graded differences in brain dynamics have, however, not yet been uncovered. Given the age-related decline of the dopamine (DA) system in normal cognitive aging, DA neuromodulation is one plausible mechanism. Hence, agents that boost systemic DA [such as d-amphetamine (AMPH)] may help to restore deficient signal variability levels. Furthermore, despite the standard practice of counterbalancing drug session order (AMPH first vs. placebo first), it remains understudied how AMPH may interact with practice effects, possibly influencing whether DA up-regulation is functional. We examined the effects of AMPH on functional-MRI–based blood oxygen level-dependent (BOLD) signal variability (SDBOLD) in younger and older adults during a working memory task (letter n-back). Older adults expressed lower brain signal variability at placebo, but met or exceeded young adult SDBOLD levels in the presence of AMPH. Drug session order greatly moderated change–change relations between AMPH-driven SDBOLD and reaction time means (RTmean) and SDs (RTSD). Older adults who received AMPH in the first session tended to improve in RTmean and RTSD when SDBOLD was boosted on AMPH, whereas younger and older adults who received AMPH in the second session showed either a performance improvement when SDBOLD decreased (for RTmean) or no effect at all (for RTSD). The present findings support the hypothesis that age differences in brain signal variability reflect aging-induced changes in dopaminergic neuromodulation. The observed interactions among AMPH, age, and session order highlight the state- and practice-dependent neurochemical basis of human brain dynamics

    Stereological Analysis of Neuron, Glial and Endothelial Cell Numbers in the Human Amygdaloid Complex

    Get PDF
    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm3 and mean cell numbers (x106) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals’ age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions

    Adiposity is Associated with Regional Cortical Thinning

    Get PDF
    BACKGROUND: Although obesity is associated with structural changes in brain grey matter, findings have been inconsistent and the precise nature of these changes is unclear. Inconsistencies may partly be due to the use of different volumetric morphometry methods, and the inclusion of participants with comorbidities that exert independent effects on brain structure. The latter concern is particularly critical when sample sizes are modest. The purpose of the current study was to examine the relationship between cortical grey matter and body mass index (BMI), in healthy participants, excluding confounding comorbidities and using a large sample size. SUBJECTS: A total of 202 self-reported healthy volunteers were studied using surface-based morphometry, which permits the measurement of cortical thickness, surface area and cortical folding, independent of each other. RESULTS: Although increasing BMI was not associated with global cortical changes, a more precise, region-based analysis revealed significant thinning of the cortex in two areas: left lateral occipital cortex (LOC) and right ventromedial prefrontal cortex (vmPFC). An analogous region-based analysis failed to find an association between BMI and regional surface area or folding. Participants' age was also found to be negatively associated with cortical thickness of several brain regions; however, there was no overlap between the age- and BMI-related effects on cortical thinning. CONCLUSIONS: Our data suggest that the key effect of increasing BMI on cortical grey matter is a focal thinning in the left LOC and right vmPFC. Consistent implications of the latter region in reward valuation, and goal control of decision and action suggest a possible shift in these processes with increasing BMI.We thank all the participants and the staff of the Wolfson Brain Imaging Centre. This work was supported by the Bernard Wolfe Health Neuroscience Fund (NM, HZ, ISF, PCF), the Wellcome Trust (RGAG/144 to N.M, RGAG/188 to ISF, RNAG/259 to PCF) and the Medical Research Council (G0701497 to KDE).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ijo.2016.42

    A European Spectrum of Pharmacogenomic Biomarkers: Implications for Clinical Pharmacogenomics

    Get PDF
    Pharmacogenomics aims to correlate inter-individual differences of drug efficacy and/or toxicity with the underlying genetic composition, particularly in genes encoding for protein factors and enzymes involved in drug metabolism and transport. In several European populations, particularly in countries with lower income, information related to the prevalence of pharmacogenomic biomarkers is incomplete or lacking. Here, we have implemented the microattribution approach to assess the pharmacogenomic biomarkers allelic spectrum in 18 European populations, mostly from developing European countries, by analyzing 1,931 pharmacogenomics biomarkers in 231 genes. Our data show significant interpopulation pharmacogenomic biomarker allele frequency differences, particularly in 7 clinically actionable pharmacogenomic biomarkers in 7 European populations, affecting drug efficacy and/ or toxicity of 51 medication treatment modalities. These data also reflect on the differences observed in the prevalence of high-risk genotypes in these populations, as far as common markers in the CYP2C9, CYP2C19, CYP3A5, VKORC1, SLCO1B1 and TPMT pharmacogenes are concerned. Also, our data demonstrate notable differences in predicted genotype-based warfarin dosing among these populations. Our findings can be exploited not only to develop guidelines for medical prioritization, but most importantly to facilitate integration of pharmacogenomics and to support pre-emptive pharmacogenomic testing. This may subsequently contribute towards significant cost-savings in the overall healthcare expenditure in the participating countries, where pharmacogenomics implementation proves to be cost-effective

    A European spectrum of pharmacogenomic biomarkers: Implications for clinical pharmacogenomics

    Get PDF
    Pharmacogenomics aims to correlate inter-individual differences of drug efficacy and/or toxicity with the underlying genetic composition, particularly in genes encoding for protein factors and enzymes involved in drug metabolism and transport. In several European populations, particularly in countries with lower income, information related to the prevalence of pharmacogenomic biomarkers is incomplete or lacking. Here, we have implemented the microattribution approach to assess the pharmacogenomic biomarkers allelic spectrum in 18 European populations, mostly from developing European countries, by analyzing 1,931 pharmacogenomics biomarkers in 231 genes. Our data show significant interpopulation pharmacogenomic biomarker allele frequency differences, particularly in 7 clinically actionable pharmacogenomic biomarkers in 7 European populations, affecting drug efficacy and/or toxicity of 51 medication treatment modalities. These data also reflect on the differences observed in the prevalence of high-risk genotypes in these populations, as far as common markers in the CYP2C9, CYP2C19, CYP3A5, VKORC1, SLCO1B1 and TPMT pharmacogenes are concerned. Also, our data demonstrate notable differences in predicted genotype-based warfarin dosing among these populations. Our findings can be exploited not only to develop guidelines for medical prioritization, but most importantly to facilitate integration of pharmacogenomics and to support pre-emptive pharmacogenomic testing. This may subsequently contribute towards significant cost-savings in the overall healthcare expenditure in the participating countries, where pharmacogenomics implementation proves to be cost-effective
    corecore