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Resting state functional 
connectivity provides mechanistic 
predictions of future changes 
in sedentary behavior
Timothy P. Morris1*, Aaron Kucyi1, Sheeba Arnold Anteraper1, Maiya Rachel Geddes2,3, 
Alfonso Nieto‑Castañon1, Agnieszka Burzynska4, Neha P. Gothe5,6, Jason Fanning7, 
Elizabeth A. Salerno8, Susan Whitfield‑Gabrieli1,9, Charles H. Hillman1,10, 
Edward McAuley5,6 & Arthur F. Kramer1,5

Sedentary behaviors are increasing at the cost of millions of dollars spent in health care and 
productivity losses due to physical inactivity‑related deaths worldwide. Understanding the 
mechanistic predictors of sedentary behaviors will improve future intervention development and 
precision medicine approaches. It has been posited that humans have an innate attraction towards 
effort minimization and that inhibitory control is required to overcome this prepotent disposition. 
Consequently, we hypothesized that individual differences in the functional connectivity of brain 
regions implicated in inhibitory control and physical effort decision making at the beginning of an 
exercise intervention in older adults would predict the change in time spent sedentary over the 
course of that intervention. In 143 healthy, low‑active older adults participating in a 6‑month aerobic 
exercise intervention (with three conditions: walking, dance, stretching), we aimed to use baseline 
neuroimaging (resting state functional connectivity of two a priori defined seed regions), and baseline 
accelerometer measures of time spent sedentary to predict future pre‑post changes in objectively 
measured time spent sedentary in daily life over the 6‑month intervention. Our results demonstrated 
that functional connectivity between (1) the anterior cingulate cortex and the supplementary 
motor area and (2) the right anterior insula and the left temporoparietal/temporooccipital junction, 
predicted changes in time spent sedentary in the walking group. Functional connectivity of these brain 
regions did not predict changes in time spent sedentary in the dance nor stretch and tone conditions, 
but baseline time spent sedentary was predictive in these conditions. Our results add important 
knowledge toward understanding mechanistic associations underlying complex out‑of‑session 
sedentary behaviors within a walking intervention setting in older adults.

In 2007 it was estimated that ~ 5.3 million global deaths from non-communicable diseases could have been 
prevented if people engaged in sufficient levels of moderate-to-vigorous physical activity instead of being 
insufficiently  active1. Compounding this further, global statistics show the prevalence of physical inactivity is 
 increasing2,3. Over a third of the US population (34.8%) lead sedentary  lifestyles2–4 and the economic burden 
caused by physical inactivity is estimated to cost private and public health-care systems $53.8 billion per  year5,6.
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To combat the negative consequences of sedentary behaviors, particularly in older adults, the field has studied 
extensively the beneficial effects of exercise  interventions7–9. The most well studied exercise interventions are 
walking interventions, which are both economical and easily accessible, particularly for older  adults10. These 
studies have led to numerous discoveries on the beneficial effects of increased walking on cognitive function, 
particularly, processing speed, memory and executive  function11. Walking interventions also have been shown 
to increase hippocampal  volume12 and the plasticity of functional brain  networks13. These results are particularly 
important given that these same outcomes are also associated with age-related  decline14–17. However, engaging 
in a significant behavioral change is non-trivial and despite significant efforts to understand determinants of 
sedentary lifestyles, the prevalence of physical inactivity continues to  increase2,3.

Sedentary behaviors are not simply the inverse of moderate-to-vigorous physical  activity18,19. For example, 
a person can both perform 30 min of moderate-to-vigorous physical activity achieving recommended  levels20 
and also engage in a high volume of sedentary behavior throughout the rest of the day. Further, the determinants 
of sedentary behaviors are distinct from those of physical activity engagement  too18. For example, to engage in 
a bout of physical activity one must inhibit a desire to minimize effort one time, whereas avoiding sedentary 
behaviors throughout the day requires consistent awareness and self-regulation of such  behaviors21. Understand-
ing the determinants of sedentary behaviors has relied upon psychological frameworks and cognitive-behavioral 
 theories18,21–23. Automatic processes, attitudes and habits and self-regulation have been suggested to regulate 
daily sedentary  behavior21. Associations between self-efficacy and sedentary behavior has been shown in meta-
analyses24, and interventions targeting perceptions of competence and capability (self-efficacy) have been shown 
to reduce time spent sedentary in younger  adults25. From a cognitive perspective, to successfully overcome 
short-term costs in favor of longer-term benefits (like reducing sedentary behaviors), executive control func-
tions, such as inhibitory control, flexibility and goal-orientated decision making are  required26. Notwithstanding, 
multicomponent approaches to intervention development have been  conceived27 based on this prior knowledge, 
yet efficacious interventions that lead to sustained behavioral change are yet to be developed. Little emphasis has 
been placed on the discovery of mechanistic determinants of sedentary behaviors that would provide tangible 
targets for intervention development and testing.

Behavioral choices involving the assessment of motor costs are ever present in day-to-day life and involve the 
integration of information about available energy resources to weigh physical and motor costs against expected 
 rewards28. A theory of energetic cost minimization postulates that we have an innate attraction towards effort 
minimization whilst maximizing  reward28–31. This theory is reflected in evolutionary, developmental and situ-
ational scenarios, where for example, humans have developed body shapes and neural circuitry refined for 
energy  optimization32, and during development, energy efficient movements are consolidated through motor 
 practice33, which are constantly adapted in real time to minimize energy costs, such as gait refinements during 
 walking34. Neural circuitry underlying the valuation of potential behaviors related to physical effort costs have 
consistently implicated both the anterior mid-cingulate cortex  (aMCC35) and the dorsal anterior insula (dAI) in 
these  behaviors28,31,36. For example, in rodents, local field potentials in and coherence between the aMCC and 
the dAI correlate with relative performance on a physical effort-based  task36. In humans, neuroimaging studies 
have demonstrated that the aMCC is a critical region for decision-making of choices involving motor-costs28 
and further, that activity in the aMCC and the dAI represent the devaluation of rewards associated with physi-
cal  effort31. Additionally, these same regions are consistently implicated in inhibitory  control37,38, a higher order 
executive function shown to be needed to overcome physical effort  minimization26. Together, this theoretical and 
experimental evidence may suggest a role for the aMCC and the dAI in the regulation of sedentary behaviors.

The discovery of neural predictors of future sedentary behaviors may provide both strong predictive strength 
as well as mechanistic information relevant for intervention development. The utility and efficacy of functional 
connectivity (FC) to predict future behavioral outcomes has been demonstrated in previous research. For exam-
ple, Saghayi and colleagues predicted adherence to mental training programs using  FC39 and Whitfield-Gabrieli 
and colleagues predicted treatment response in social anxiety disorder with FC, better than clinical measures 
 alone40.

The aim of this present study therefore was to evaluate if the FC of two a-priori defined brain regions (aMCC 
and the r-dAI) implicated in inhibitory control and physical effort decision making, at baseline, could predict 
future change in objectively measured sedentary behavior in older adults participating in a 6-month randomized 
controlled trial of exercise (which included a walking, a dancing and a stretching control condition).

Methods
Participants and study design. This study presents results of a secondary analysis of baseline data from 
participants who participated in a 6-month randomized controlled exercise trial (clinical study identifier: 
NCT01472744, November 16, 2011). The study procedures were approved by the University of Illinois Insti-
tutional Review Board and written informed consent was obtained from all participants prior to any research 
activities. All methods were carried out in accordance with the Declaration of Helsinki. Healthy but low active 
older adults were recruited in Champaign County. Two hundred and forty-seven (169 women) low-active (less 
than two bouts of self-reported moderate exercise per week within the past 6 months) older adults met inclu-
sion criteria for the initial clinical trial. Of which one hundred and sixty-five underwent functional magnetic 
resonance imaging (fMRI). Participants in the initial trail were randomized to one of four intervention groups; 
a walking intervention, a walking intervention plus a dietary supplement, a dancing intervention and a control 
stretch and toning intervention. For the purpose of this analysis, we combined the two walking groups to increase 
the sample size as the walking portion of the intervention as identical and no significant differences in outcome 
measures or demographics was found between these two groups (supplementary material 1). All groups met for 
approximately one hour three times per week for six months. For this analysis, we excluded participants who 
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did not adhere to more than 50% of the intervention sessions (n = 9), for having incomplete accelerometer data 
available (n = 7), high motion artefact in the fMRI scan (see below for criteria, n = 2), or for influential outlier 
data points in the outcome variable (see criteria below, n = 4). 143 participants were ultimately included in this 
study. For more details on this clinical trial, its primary outcomes and neuroimaging data, please refer to earlier 
 work41–44. Initially, to enroll in the study, participants must have met the following criteria: were between the 
ages of 60 and 80 years old, free from psychiatric and neurological illness and had no history of stroke, transient 
ischemic attack, or head trauma, scored < 23 on the Mini-Mental State Exam, < 21 on a Telephone Interview of 
Cognitive Status questionnaire and < 10 on the Geriatric Depression Scale, at least 75% right-handed based on 
the Edinburgh Handedness Questionnaire (a criterion related to functional magnetic resonance imaging (MRI) 
analyses), demonstrated normal or corrected-to-normal vision of at least 20/40 and no color blindness, screened 
for safe participation in an MRI environment (e.g., no metallic implants that could interfere with the magnetic 
field or cause injury and no claustrophobia) and reported to have participated in no more than two bouts of 
moderate exercise per week within the past 6 months (with the goal of recruiting low active older adults). Our 
current analysis asks a novel question of this dataset that has not been previously assessed. Table 1 contains com-
plete characterization of the study participants broken down by each intervention group.

Accelerometry. Time spent sedentary was measured using an ActiGraph accelerometer device (Model 
GT1M or GT3X; ActiGraph, Pensacola, FL) for one week at baseline and one-week post-intervention. Par-
ticipants were instructed to wear the accelerometer on the nondominant hip during waking hours for seven 
consecutive days. For data reduction, the following criteria were applied to the raw data recorded by each moni-
tor: wear time validation criterion of ≥ 10 h of wear time per day for at least 3 days and an interruption period 
of 60  min45. These data were downloaded as activity counts, which represent raw accelerations summed over a 
specific epoch length (e.g., 1 s) and subsequently processed into activity intensities in ActiLife software pack-
age (Version 6; Actigraph, Pensacola, FL). A low intensity proxy for sedentary behavior was derived using older 
adult-specific cut  points46 such that 50 or fewer counts per minute corresponded with sedentary behavior. Esti-
mated average daily minutes spent in the sedentary category (< 50 counts/min) were calculated by dividing the 
number of minutes spent in that category by the total number of valid days worn per participant. Our outcome 
measure (change in time spent sedentary) was calculated as post-test minus pre-test of the estimated average 
daily minutes spent sedentary.

Magnetic resonance imaging: preprocessing. Participants underwent an MRI scanning session in 
a 3 Tesla Siemens TIM Trio system with a 12-channel head coil. High-resolution structural MRI scans were 
acquired using 3D MPRAGE T1-wighted sequences (TR = 1900 ms; TE = 2.32 ms; TI: 900 ms; flip angle = 9°; 
matrix = 256 × 256; FOV = 230 mm; 192 slices; resolution = 0.9 × 0.9 × 0.9 mm; GRAPPA acceleration factor 2). 
One run of T2*-weighted resting state echoplanar imaging (EPI) data was obtained with the following param-
eters: (6  min, TR = 2  s, TE = 25  ms, flipangle = 80°, 3.4 × 3.4  mm2 in-plane resolution, 35 4  mm-thick slices 
acquired in ascending order, Grappa acceleration factor = 2, 64 × 64 matrix).

Preprocessing of the functional resting state data was performed using the CONN-toolbox v.19c47, relying 
upon SPM v.12 (Wellcome Department of Imaging Neuroscience, UCL, London, UK) in MATLAB R2019a 
(The MathWorks Inc, Natick, MA, USA). The latest default preprocessing pipeline implemented in Conn was 
performed which consists of the following steps: functional realignment and unwarping, slice timing correction, 
outlier identification, segmentation (into grey matter, white matter and cerebrospinal fluid) and normalization 
into standard Montreal Neurologic Institute (MNI) space resampled to 2 mm isotropic voxels for functional data 
and 1 mm for anatomical data, using 4th order spline interpolation. Functional scans were spatially smoothed 
using a 6 mm FWHM Gaussian kernel. During the outlier detection step, acquisitions with framewise displace-
ment above 0.9 mm or global BOLD signal changes above 5 standard deviations were flagged as outliers using 
the Artefact Detection Tools (www. nitrc. org/ proje cts/ artif act_ detect). Two participants were removed from 
the final analyses for having > 30 scan volumes flagged. This cut off was determined based on preserving at least 
5 min of scanning  time48. Additionally, mean motion (framewise displacement) was used as a covariate of no 
interest in all second level analyses. This was done to be over conservative given previous studies have shown high 
degree of motion-behavior  correlations49, despite the fact that no motion parameter was significantly correlated 
with sedentary time in our data (P > 0.05). Denoising of the functional data was performed using a principal 

Table 1.  Participant characteristics. Baseline sedentary time = estimated baseline average daily minutes spent 
sedentary, Post sedentary time = estimated post-intervention average daily minutes spent sedentary. P-value 
represents the results of ANOVA (continuous) or chi-square test of independence (categorical) tests on 
outcome and demographic variables between groups.

Walk Dance Stretch and Tone P

N 63 40 40

Age (mean (SD)) 65.33 (4.53) 66.15 (4.74) 65.72 (4.89) 0.683

Baseline sedentary time (mean (SD)) 537.43 (91.67) 530.11 (92.84) 564.79 (75.35) 0.170

Post sedentary time (mean (SD)) 555.72 (107.9) 547.24 (83.03) 574.90 (72.30) 0.388

Female sex (%) 46 (71.9) 28 (70.0) 28 (70.0) 0.970

Increase in sedentary time (%) 38 (60.3) 24 (60.0) 22 (55.0) 0.851

http://www.nitrc.org/projects/artifact_detect
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component analysis-based correction method,  CompCor50. Linear regression was used to remove the effects of 
these artifacts on the BOLD time series for each voxel and each subject taking into account noise components 
from cerebral white matter and cerebrospinal fluid, estimated subject-motion parameters (3 rotation and 3 trans-
lation parameters and 6 other parameters representing their first order time derivatives), scrubbing (one noise 
component for each outlier scan detected in the outlier detection step) and constant and first-order linear session 
effects. Temporal band-pass filtering (0.008–0.09 Hz) was applied to remove physiological, subject-motion and 
outlier-related artefacts. MRI quality control measures are found in the supplementary material 2.

Seed‑based correlations. The average time series in two regions of interest (ROI), the anterior mid-cin-
gulate (aMCC) and the right dorsal anterior insula (r-dAI) were extracted. We defined our seeds using the 
100-parcel functional atlas by Schaefer 2018. Because the functional parcels of the aMCC and the r-dAI extend 
outside of the anatomical boundaries of interest, we limited our seed ROIs to just the functional parcel con-
strained by the anatomical boundaries of the aMCC and the r-dAI set by the Harvard–Oxford anatomical atlas. 
This was done by binarizing the parcels from each atlas and using ‘fslmaths’ functions (Functional Magnetic 
Resonance Imaging of the Brain’s Software Library, http:// www. fmrib. ox. ac. uk/ fsl) to multiply the two parcels 
together (see Fig. 1 for an illustration of the seed ROIs). Then, Pearson’s correlation coefficients were computed 
between the average time series in each ROI and the time series of all other voxels in the brain and converted to 
normally distributed z-scores using Fisher transformation prior to performing the second-level general linear 
model. Individual change in sedentary time was entered as a covariate of interest in the second-level analysis, 
controlling for nuisance variables, age, gender, baseline sedentary time and mean framewise displacement, in 
separate general linear models for each ROI. In a confirmatory step, results in this second level analyses were 
estimated using a height threshold (voxel level P < 0.001) and a family-wise corrected cluster-extent threshold (p 
FWE < 0.05) and can be found in the supplementary materials 3.

Statistical analyses. The effect of each intervention on time spent sedentary was assessed using repeated 
measures analysis of variance. Differences in outcome and demographic variables between groups were assessed 

Figure 1.  (A) Illustrates the aMCC seed region. (B) Summary figure of the whole group-level connectivity with 
the aMCC seed ROI showing functional connectivity with regions of the salience network (e.g. anterior insula, 
temporoparietal junction). (C) Illustrates the r-dAI seed region. (D) Summary figure of the whole-group-level 
connectivity with the r-dAI seed ROI demonstrating our seed functionally connected to the salience network 
(bilateral insula, temporoparietal junction, inferior frontal operculum, anterior cingulate cortex), and was 
anticorrelated with the default mode network (inferior parietal lobule, precuneus, superior frontal gyrus). All 
second-level contrasts assessing the association with behavioral variables of interest take the average BOLD 
signal within the seed region only and correlate that with all other voxel in the brain mask.

http://www.fmrib.ox.ac.uk/fsl
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using analysis of variance for continuous outcomes and chi-square test of independence for categorical vari-
ables within the Table1 function in R. The Breusch-Pagan Test of Heteroskedasticity was performed to ensure 
homogeneity of variance.

To assess whether baseline measure of sedentary time predicted change in time spent sedentary we ran inde-
pendent linear regression models using leave-one-out cross validation (LOOCV) in each group with age and sex, 
(and baseline sedentary time in the FC models). Model assumptions for linear models were checked using Q-Q 
and fitted vs. residual plots in R. The significant influence of outliers was checked using Cook’s distance with a 
cut off of 0.5 (n = 3 for the stretch and tone group and n = 1 for the walking group).

To test whether seed-based functional connectivity predicted change in time spent sedentary we implemented 
a nested cross validation procedure. Each outer-layer LOO iteration used data from N-1 subjects to: (a) first select 
the largest cluster of voxels showing significant (P < 0.001) voxel-level associations with time spent sedentary; (b) 
run an inner-layer cross-validation procedure to fit a linear model between average connectivity in that cluster 
and time spent sedentary; and (c) compute the average connectivity within this cluster for the left-out subject 
and use the estimated linear model parameters to predict time spent sedentary for this same left-out subject.

Model performance is presented as cross-validated  R2 values. We also present the average prediction error 
(RMSE) which represents the difference between the observed and predicted values. Statistical significance of 
the prediction models was assessed via 1000 nonparametric permutations and the p-value of the permutation 
tests were calculated as the proportion of sampled permutations that are greater or equal to the true prediction 
correlation.

LOOCV of the seed-based correlation clusters was performed in MATLAB using the “spm_nestedcrossvalida-
tion” code and all other statistics performed in RStudio Version 3.6.3 (R Foundation for Statistical Computing, 
Vienna, Austria) using “tidyverse”51, “Caret”52 and base R packages.

Ethics approval. The University of Illinois Institutional Review Board approved all procedures used in the 
study.

Consent to participate. All participants gave written informed consent before participation in any study 
procedures, all of which conformed to the Declaration of Helsinki for research involving human subjects.

Consent for publication and author responsibilities. All authors agree to the contents of this manu-
script and give consent for its publication.

Results
One-hundred and forty-three low-active healthy older adults were included in this study. Table 1 outlines partici-
pant demographics broken down by intervention condition. The distribution of the change in time spent seden-
tary (Fig. 2) revealed that a higher proportion of participants increased their time spent sedentary over the course 
of the intervention with no significant differences in this proportion between intervention conditions (Table 1). 
No main effect of condition assignment (F(1) = 1.981, P = 0.167), time (F(1) = 2.934, P = 0.087) or time by condi-
tion interaction (F(1) = 0.137, P = 0.711) was found for time spent sedentary over the course of the intervention.

Baseline time spent sedentary. Baseline time spent sedentary predicted change in time spent sedentary 
in the stretch and tone and dance groups, but not the walking group (Table 2).

Functional connectivity. In the dance and stretch and tone groups, baseline functional connectivity of the 
aMCC and the r-dAI was not predictive of change in time spent sedentary. In the walking group baseline func-
tional connectivity between the aMCC and the M1/SMA predicted change in time spent sedentary (Table 2 and 
Fig. 3). Similarly, baseline functional connectivity between the r-dAI and the left temporoparietal/temporooc-
cipital region (areas spanning the middle temporal gyrus, angular gyrus and lateral occipital cortex predicted 
change in time spent sedentary (Table 2 and Fig. 3). All results from these second level seed-based correlations 
were confirmed to hold in a whole-sample association analysis using conventional height-level statistical thresh-
old of P < 0.001 and cluster threshold of P < 0.05 family wise error corrected (supplementary material 3).

Discussion
The aims of the current study were to assess whether baseline functional connectivity of brain regions implicated 
in executive control and effort-based decision making could provide mechanistic predictions of change in time 
spent sedentary in older adults participating in a randomized control trial of exercise. In the walking group, par-
ticipating in the most commonly found exercise intervention in the literature, we found that baseline behavioral 
measures were not predictive of change in time spent sedentary but functional connectivity of the aMCC and 
r-dAI were predictive. In the aerobic dance group and the control stretch and tone group, FC was not predictive 
of change in time spent sedentary, but baseline time spent sedentary was.

While our analysis of the objective measures of time spent sedentary did not reveal any differences between 
intervention conditions, previous research in this same  sample43 demonstrated differences in out-of-session 
aerobic activity between intervention conditions, suggesting that the determinants of exercise and sedentary 
behaviors (in older adults participating in an exercise intervention) could differ between intervention types. 
Our result that FC predicted change in time spent sedentary in the walking group only is potentially in line 
with the idea that specific interventions may result in contextually different behaviors. Notwithstanding, many 
aerobic exercise interventions in older adults consist only of an active and a control intervention, making this 
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Figure 2.  Histograms of participant changes in sedentary time over the 6-month interventions. A numerically 
similar proportion of individuals increased as decreased their time spent sedentary. Gold vertical line represents 
the mean change, “0” on the x-axis represents no change.

Table 2.  Prediction of change in time sent sedentary. All models are performed using leave-one-out cross 
validation. RMSE root mean square error and represents the differences between the observed and predicted 
outcomes (the lower the value the better the prediction). All significant models survive multiple comparisons 
using false discovery rate (supplementary material 4). Statistical significance of the prediction models was 
assessed via 1000 nonparametric permutations and the p-value of the permutation tests were calculated as the 
proportion of sampled permutations that are greater or equal to the true prediction correlation.

β SE P R2 RMSE

Walking group

Baseline sed time − 0.099 0.079 0.22 0.06 56.36

aMCC FC 213.7 45.88 .002 0.11 59.13

r-dAI FC 173.01 33.70 .021 0.11 45.73

Dance group

Baseline sed time − 0.36 0.115 0.003* 0.10 57.56

aMCC FC n/a n/a n/a n/a n/a

r-dAI FC n/a n/a n/a n/a n/a

Stretch and tone group

Baseline sed time − 0.370 0.094  < 0.001* 0.20 55.09

aMCC FC n/a n/a n/a n/a n/a

r-dAI FC n/a n/a n/a n/a n/a
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conclusion hard to generalize. One possible interpretation of the differential predictiveness between our experi-
mental conditions is perhaps related to statistical power. When we ran a down sampled analysis of the models 
using a randomly sampled N of 45 in the walking condition, the aMCC-to-M1/SMA relationship found in the 
wider walking sample was still present (supplementary material 4), but the r-dAI result was not. Interestingly, 
when running an exploratory analysis with all conditions combined (N = 143), the aMCC result disappears and 
the r-dAI result seen in the entire walking sample is present (supplementary material 5). This is perhaps sugges-
tive of a lack of statistical power in the dance and stretch and tone samples, respectively, to detect a relationship 
between the FC of the r-dAI seed and change in time spent sedentary. Indeed, our power analysis in these inter-
vention condition groups (supplementary material 6) found that we only have 64% power to detect an effect of 
the size seen in the walking condition. However, at the same time, these exploratory analyses lead to us speculate 
that the aMCC-to-M1/SMA FC result is perhaps specific to the walking condition. One possible explanation of 
the walking condition-specific result could lie in a previous analysis of this  sample43 where participants in the 
walking group self-reported a reduction in the amount of out-of-session aerobic activity across the course of the 
6-month intervention whereas those participating in the dance and stretch and tone conditions maintained their 
aerobic activity levels. In that prior  analysis43, perceived intensity of the intervention sessions was associated with 
out-of-session aerobic activity, whereby higher perceptions of session activity were found for the walking group 
compared to the dance group and thus it was concluded that those in the walking group may have deemed the 
3 times per week sessions as sufficient aerobic activity where as those in the dance and stretch and tone groups 
may have deemed their session to be necessary but insufficient, leading them to engage in more aerobic activity 
outside of the intervention sessions. Consequently, given the aMCC’ role in effort-based decision making, it is 
plausible that this mechanistic prediction of change in time spent sedentary is specific to those engaging in a 
walking intervention of a given intensity to be perceived as sufficient weekly aerobic exercise.

The main aim of this study was to ask whether resting state functional connectivity could provide mechanistic 
predictions of change in time spent sedentary. We chose our seed regions (aMCC and the r-dAI) as they have 
been consistently implicated in effort-based decision making and the integration of motor costs with reward 
 outcomes28,31,36,53. Further, these same regions have been implicated in inhibitory control, which has been shown 
to be important to overcome the posited innate attraction towards effort  minimization26. The function of the 
aMCC and its behavioral role has been highly debated (i.e. does it motivate effortful behaviors?54,55 or engage in 
decision-making and deployment of cognitive control?56). In an attempt to unify these theories, Holyrood and 
Yeung (2012) proposed that the aMCC supports the selection and maintenance of options and context-specific 
sequences of behavior directed towards particular goals. In line with this, it has been suggested that poorer 
monitoring of behavior by the aMCC (reflected as increased activity in the aMCC during error-related activity 
in a Go/NoGo  task57) may increase the effort required to inhibit  behaviors38. Highly relevant to our results, one 
previous study demonstrated that a network involving the aMCC and the SMA is critically involved in effort-
based decision-making and the integration of motor costs into reward  evaluation28. More importantly, the same 

Figure 3.  Summary figure of cluster regions predictive of change in time spent sedentary for each seed 
(A = aMCC, B = r-dA) and scatter plots of predicted vs observed values. Each summary figure represents the 
mean mask from each outer layer leave-one-out cross validation iteration that predicted the left-out subject’s 
change in time spent sedentary in the inner layer. For the aMCC seed (A), the mean cluster spanned regions in 
the primary motor cortex (axial slice view) and the supplementary motor area (sagittal slice view). For the r-dAI 
seed (B), the mean cluster mask spanned the middle temporal gyrus, angular gyrus and lateral occipital cortex.
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study found that activity in the SMA was stronger in participants who tried to more activity avoid higher  efforts28. 
It is plausible therefore that those participants in our study who increased their time spent sedentary were engag-
ing in effort avoidance and/or poor behavioral monitoring, which is reflected as an increase in FC between the 
aMCC (involved in decision making where motor costs are evaluated) and the SMA (has higher activity during 
effort avoidance). Our aMCC seed result also extended into the primary motor cortex (M1) as well (Fig. 3A). 
While voluntary movements and internally-selected actions are more traditionally associated with the  SMA58 
and aMCC-to-SMA  FC54, neural projections between the aMCC and M1 are present in  primates59,60 and in fMRI 
studies, co-activation of the aMCC and motor regions have been seen in working memory  tasks61. Activity in M1 
has been found during mental effort and is likely involved in an attentional network linking behavioral responses 
to salient  stimuli62. Indeed, the left medial portions of the cluster mapped onto the ventral attention network 
(VAN), a network involved in both  attention63 and external  awareness64. Further, activity in the left motor cortex 
has been shown to increase as the subjective value of effortful rewards  increases31.

Higher FC between the r-dAI and a cluster overlapping the left temporoparietal and temporooccipital regions 
junction (regions covering the superior middle temporal gyrus and the inferior angular gyrus and lateral occipital 
gyrus) was also predictive of increases in time spent sedentary. The r-dAI has been proposed to provide an early 
cognitive control  response65 and when mapping this result to a large functional network  parcellation66, both 
the r-dAI and portions of this cluster (those in the temporoparietal junction (TPJ)) map onto a broad, bilateral 
VAN/salience network. Indeed, group level connectivity of the r-dAI ROI (Fig. 1D) shows positive FC with 
salience/VAN regions and is anticorrelated with the default mode network (a hallmark sign of the VAN). The 
VAN is said to be involved in re-direction of attention to behaviorally relevant  stimuli63,67 and is implicated in 
more external awareness than the synonymous salience  network64. Previous research using FC have shown the 
VAN to be predominantly (but not exclusively) lateralized to the right  hemisphere68, nevertheless, bilateral TPJ 
was confirmed to be part of a broad VAN in a very large (N = 1000)  study66. Additionally, the left TPJ’s inclusion 
in such a network seems to provide a distinct role beyond orientating attention to salient stimuli. For example, 
Webb and  colleagues64 suggested that the left TPJ had a critical role in visual external awareness. The authors 
suggest that awareness can be disassociated from attention, and that significantly more attention may be drawn 
to a stimulus when subjects are aware of  it64. Another  study69 suggested that the left TPJ is functionally connected 
to other regions more associated with executive control and therefore may be more involved in the integration 
of contextual knowledge about salient stimuli. In accordance, the dAI has been suggested to be involved in 
 awareness70. Further, the dAI and the aMCC are functionally connected at  rest71,72 and across multiple tasks, 
the dAI and the aMCC are almost always  coactivated73. Relevant to this study, the broad VAN network of brain 
regions that are implicated in our seed-based correlations have also been shown to change with advancing  age74. 
Therefore, our results suggest that individual differences in the FC of this broad bilateral VAN, possibly engag-
ing in external awareness, effort-based decision making and effort avoidance, in aging is predictive of changes 
in time spent sedentary in previously low-active older adults participating in a 6-month walking intervention.

Our results can only be interpreted in light of their limitations. The studies that have implicated the brain 
regions discussed have largely used task-based fMRI whereas we have relied upon intrinsic resting state FC. A 
future study to prospectively test the role of these brain regions in sedentary behaviors would provide stronger 
evidence of their mechanistic role. Furthermore, we restricted our analysis to a hypothesis-driven approach 
with a-prior defined seed regions. A future study may take a more data-driven approach surveying whole-brain 
functional connectivity in a more exploratory approach to assess the strength of as of yet unknown brain regions 
to predict change in time spent sedentary. The sample size in our study is relatively small and given the difficulty 
in objectively measuring sedentary behavior and the cost of running randomized control trials of exercise, we 
do not have an independent dataset on which to examine the generalizability of these results, nevertheless, 
cross-validation (which we employed) is one way to improve this generalizability. It is of note that the walking 
group contained participants randomized to either walking group or a walking group with a dietary supple-
ment (see methods section for more details). No significant differences in behavioral and demographic variables 
were found between the groups and so we do not believe the dietary supplement will have affected our results. 
Regarding the accelerometry, because the Actigraph does not provide a reliable measure of body posture, we 
relied on a low-intensity proxy for sedentary behavior. As such we were unable to tease out very light activities 
and standing from overall sedentary time.

Here we show that individual differences in the baseline FC of multiple brain regions previously implicated in 
inhibitory control and effort-based decision making predict future change in sedentary time in low-active older 
adults participating in a 6-month walking intervention. Leveraging mechanistic predictors of future sedentary 
behaviors will potentially lead to targeted interventions that result in sustained behavioral change.

Data availability
All data will be provided upon reasonable request to the corresponding author, without reservation.

Code availability
Code used in this manuscript includes R syntax for statistical analyses and will be shared upon request to the 
corresponding author.
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