3,330 research outputs found

    Exploring the use of game making across the school curriculum

    Get PDF
    Computer games as part of education is a well-established topic for research, suggesting that creating games is linked to a range of cognitive and behavioural outcomes. Creating games in all subject disciplines is becoming increasingly possible due to the increasingly higher status of computing in schools across Europe and the prevalence of visual programming languages such as Scratch and Pocket Code. The use of games within education is not new; in a systematic review of 129 papers [1] found that playing games impacts across a range of areas including engagement, cognitive ability and, most commonly, knowledge acquisition and content understanding. However, while research has thus far examined game play and game based learning in education there is limited work focussing on the process of game creation as a method of classroom teaching. This is a prospect which is increasingly possible with the introduction of visual programming languages such as Scratch [2] and Pocket Code. It is suggested that playful learning through computer games could stimulate students’ intrinsic motivation ([3] and that knowledge creation can emerge through the construction of artefacts in a playful learning environment via the co-creation of games [4]. The research presented in this paper is from a pilot study examining the impact of game making in traditional primary and secondary school classrooms (5-18 years) in the United Kingdom (UK). The research, funded by Horizon 2020, is part of a wider European project; No-one Left Behind. In the UK the project has introduced game making into disciplines such as Religious Education, Science and History. Data indicates that although not all students found this a positive experience, computational thinking skills have increased, and students, disaffected with their learning, have re-engaged with learning, increasing their persistence and resulting in a deeper understanding of subject knowledge. In addition initial results suggest that game making has the potential to increase engagement with classroom learning and lead to increased learner satisfaction within lessons. Non-computing teachers have gained in confidence in developing game creation in their subject discipline, increasing their awareness of computational thinking. Barriers identified include teacher familiarity with programming as a means to teach non-STEM subject knowledge, a potential to decrease knowledge acquisition during the process of familiarisation with the teaching tool and a need for software developers to consider design for children with SEND. The project is changing the learning environment and emerging pedagogy has been identified which will be shared in this paper. As a result of the study lesson resources have been created for teachers to use across disciplines which are now available via the project URL; these will be shared in this paper

    Molecular Hydrogen Emission from Protoplanetary Disks II. Effects of X-ray Irradiation and Dust Evolution

    Get PDF
    Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and ultraviolet (UV) irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains in the disks are numerically computed by solving the coagulation equation for settling dust particles. The level populations and line emission of molecular hydrogen are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk region and in the surface layer, while the far UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-ray induced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the properties of the dust grains in the disks. As the dust particles evolve in the disks, the gas temperature at the disk surface drops because the grain photoelectric heating becomes less efficient, while the UV radiation fields become stronger due to the decrease of grain opacity. This makes the H2 level populations change from local thermodynamic equilibrium (LTE) to non-LTE distributions, which results in changes to the line ratios of H2 emission. Our results suggest that dust evolution in protoplanetary disks could be observable through the H2 line ratios. The emission lines are strong from disks irradiated by strong UV and X-rays and possessing small dust grains; such disks will be good targets in which to observe H2 emission.Comment: 33 pages, accepted for publication in the Astrophysical Journa

    Stellar Proper Motions in the Galactic Bulge from deep HST ACS/WFC Photometry

    Full text link
    We present stellar proper motions in the Galactic bulge from the Sagittarius Window Eclipsing Extrasolar Search (SWEEPS) project using ACS/WFC on HST. Proper motions are extracted for more than 180,000 objects, with >81,000 measured to accuracy better than 0.3 mas/yr in both coordinates. We report several results based on these measurements: 1. Kinematic separation of bulge from disk allows a sample of >15,000 bulge objects to be extracted based on >6-sigma detections of proper motion, with <0.2% contamination from the disk. This includes the first detection of a candidate bulge Blue Straggler population. 2. Armed with a photometric distance modulus on a star by star basis, and using the large number of stars with high-quality proper motion measurements to overcome intrinsic scatter, we dissect the kinematic properties of the bulge as a function of distance along the line of sight. This allows us to extract the stellar circular speed curve from proper motions alone, which we compare with the circular speed curve obtained from radial velocities. 3. We trace the variation of the {l,b} velocity ellipse as a function of depth. 4. Finally, we use the density-weighted {l,b} proper motion ellipse produced from the tracer stars to assess the kinematic membership of the sixteen transiting planet candidates discovered in the Sagittarius Window; the kinematic distribution of the planet candidates is consistent with that of the disk and bulge stellar populations.Comment: 71 pages, 30 figures, ApJ Accepte

    Hepcidin and iron species distribution inside the first-trimester human gestational sac

    Get PDF
    We have investigated factors affecting iron distribution in the first-trimester gestational sac, by the measurement of transferrin, non-transferrin-bound iron (NTBI) and pro-hepcidin (Hep) in maternal serum, coelomic fluid (CF) and amniotic fluid (AF) and by immunostaining for Hep in villous and secondary yolk sac biopsies. These samples were obtained from 15 first-trimester pregnancies at 8–11 weeks gestation. Transferrin concentrations were significantly lower in fetal (0.56 mg/ml) than maternal serum (1.71 mg/ml), with very low concentrations in CF and AF (0.09 mg/ml). In contrast, transferrin saturations were significantly higher in fetal (77%) than maternal serum (33%). NTBI was present in fetal serum, CF and AF, presumably as a consequence of low transferrin concentrations in these compartments. Pro-Hep was present at lower levels in fetal (140.0 ± 11.1) than maternal serum (206.2 ± 9.2) and at low concentrations in CF (19.4 ± 3.1) and AF (21.8 ± 5.2). Immunostaining with Hep antibody was found in the syncytiotrophoblast of first-trimester placenta as well as in mesothelial and endodermal layers of the secondary yolk sac at 10 weeks. The presence of Hep in syncytiotrophoblast cells of first-trimester placenta as well as in mesothelial and endodermal layers of the secondary yolk sac suggest a key regulatory role for this protein in iron transfer to the first-trimester fetus. The low transferrin concentrations and the presence of NTBI in CF and AF suggest that transferrin-independent iron transfer is important in early gestation

    HABITAT: A longitudinal multilevel study of physical activity change in mid-aged adults

    Get PDF
    Purpose. To explore the role of the neighborhood environment in supporting walking Design. Cross sectional study of 10,286 residents of 200 neighborhoods. Participants were selected using a stratified two-stage cluster design. Data were collected by mail survey (68.5% response rate). Setting. The Brisbane City Local Government Area, Australia, 2007. Subjects. Brisbane residents aged 40 to 65 years. Measures. Environmental: street connectivity, residential density, hilliness, tree coverage, bikeways, and street lights within a one kilometer circular buffer from each resident’s home; and network distance to nearest river or coast, public transport, shop, and park. Walking: minutes in the previous week categorized as < 30 minutes, ≥ 30 < 90 minutes, ≥ 90 < 150 minutes, ≥ 150 < 300 minutes, and ≥ 300 minutes. Analysis. The association between each neighborhood characteristic and walking was examined using multilevel multinomial logistic regression and the model parameters were estimated using Markov chain Monte Carlo simulation. Results. After adjustment for individual factors, the likelihood of walking for more than 300 minutes (relative to <30 minutes) was highest in areas with the most connectivity (OR=1.93, 99% CI 1.32-2.80), the greatest residential density (OR=1.47, 99% CI 1.02-2.12), the least tree coverage (OR=1.69, 99% CI 1.13-2.51), the most bikeways (OR=1.60, 99% CI 1.16-2.21), and the most street lights (OR=1.50, 99% CI 1.07-2.11). The likelihood of walking for more than 300 minutes was also higher among those who lived closest to a river or the coast (OR=2.06, 99% CI 1.41-3.02). Conclusion. The likelihood of meeting (and exceeding) physical activity recommendations on the basis of walking was higher in neighborhoods with greater street connectivity and residential density, more street lights and bikeways, closer proximity to waterways, and less tree coverage. Interventions targeting these neighborhood characteristics may lead to improved environmental quality as well as lower rates of overweight and obesity and associated chromic disease

    Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy

    Get PDF
    OBJECTIVE Parkinson's disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features. METHODS High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0). Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group. RESULTS Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology. CONCLUSION These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients

    Glioblastoma may evade immune surveillance through primary cilia-dependent signaling in an IL-6 dependent manner

    Get PDF
    Glioblastoma is the most common, malignant primary brain tumor in adults and remains universally fatal. While immunotherapy has vastly improved the treatment of several solid cancers, efficacy in glioblastoma is limited. These challenges are due in part to the propensity of glioblastoma to recruit tumor-suppressive immune cells, which act in conjunction with tumor cells to create a pro-tumor immune microenvironment through secretion of several soluble factors. Glioblastoma-derived EVs induce myeloid-derived suppressor cells (MDSCs) and non-classical monocytes (NCMs) from myeloid precursors leading to systemic and local immunosuppression. This process is mediated by IL-6 which contributes to the recruitment of tumor-associated macrophages of the M2 immunosuppressive subtype, which in turn, upregulates anti-inflammatory cytokines including IL-10 and TGF-β. Primary cilia are highly conserved organelles involved in signal transduction and play critical roles in glioblastoma proliferation, invasion, angiogenesis, and chemoradiation resistance. In this perspectives article, we provide preliminary evidence that primary cilia regulate intracellular release of IL-6. This ties primary cilia mechanistically to tumor-mediated immunosuppression in glioblastomas and potentially, in additional neoplasms which have a shared mechanism for cancer-mediated immunosuppression. We propose potentially testable hypotheses of the cellular mechanisms behind this finding

    Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species

    Get PDF
    Antigenic variation enables pathogens to avoid the host immune response by continual switching of surface proteins. The protozoan blood parasite Trypanosoma brucei causes human African trypanosomiasis ("sleeping sickness") across sub-Saharan Africa and is a model system for antigenic variation, surviving by periodically replacing a monolayer of variant surface glycoproteins (VSG) that covers its cell surface. We compared the genome of Trypanosoma brucei with two closely related parasites Trypanosoma congolense and Trypanosoma vivax, to reveal how the variant antigen repertoire has evolved and how it might affect contemporary antigenic diversity. We reconstruct VSG diversification showing that Trypanosoma congolense uses variant antigens derived from multiple ancestral VSG lineages, whereas in Trypanosoma brucei VSG have recent origins, and ancestral gene lineages have been repeatedly co-opted to novel functions. These historical differences are reflected in fundamental differences between species in the scale and mechanism of recombination. Using phylogenetic incompatibility as a metric for genetic exchange, we show that the frequency of recombination is comparable between Trypanosoma congolense and Trypanosoma brucei but is much lower in Trypanosoma vivax. Furthermore, in showing that the C-terminal domain of Trypanosoma brucei VSG plays a crucial role in facilitating exchange, we reveal substantial species differences in the mechanism of VSG diversification. Our results demonstrate how past VSG evolution indirectly determines the ability of contemporary parasites to generate novel variant antigens through recombination and suggest that the current model for antigenic variation in Trypanosoma brucei is only one means by which these parasites maintain chronic infections
    corecore