We present stellar proper motions in the Galactic bulge from the Sagittarius
Window Eclipsing Extrasolar Search (SWEEPS) project using ACS/WFC on HST.
Proper motions are extracted for more than 180,000 objects, with >81,000
measured to accuracy better than 0.3 mas/yr in both coordinates. We report
several results based on these measurements: 1. Kinematic separation of bulge
from disk allows a sample of >15,000 bulge objects to be extracted based on
>6-sigma detections of proper motion, with <0.2% contamination from the disk.
This includes the first detection of a candidate bulge Blue Straggler
population. 2. Armed with a photometric distance modulus on a star by star
basis, and using the large number of stars with high-quality proper motion
measurements to overcome intrinsic scatter, we dissect the kinematic properties
of the bulge as a function of distance along the line of sight. This allows us
to extract the stellar circular speed curve from proper motions alone, which we
compare with the circular speed curve obtained from radial velocities. 3. We
trace the variation of the {l,b} velocity ellipse as a function of depth. 4.
Finally, we use the density-weighted {l,b} proper motion ellipse produced from
the tracer stars to assess the kinematic membership of the sixteen transiting
planet candidates discovered in the Sagittarius Window; the kinematic
distribution of the planet candidates is consistent with that of the disk and
bulge stellar populations.Comment: 71 pages, 30 figures, ApJ Accepte