11 research outputs found

    General Approach for Multireference Ground and Excited States Using Nonorthogonal Configuration Interaction.

    Get PDF
    A balanced description of ground and excited states is essential for the description of many chemical processes. However, few methods can handle cases where static correlation is present, and often these scale very unfavorably with system size. Recently, multiple Hartree-Fock (HF) solutions have been proposed as a basis for nonorthogonal configuration interaction (NOCI) to provide multireference ground- and excited-state energies, although applications across multiple geometries have been limited by the coalescence of HF solutions. Holomorphic HF (h-HF) theory allows solutions to be analytically continued beyond the Coulson-Fischer points at which they vanish, but, until now, this has only been demonstrated for small model systems. In this work, we propose a general protocol for computing NOCI ground- and excited-state energies using multiple HF solutions. To do so, we outline an active space variation of SCF metadynamics that allows a chemically relevant set of HF states to be identified and describe how these states can be routinely traced across all molecular geometries by exploiting the topology of h-HF solutions in the complex plane. Finally, we illustrate our approach using the dissociation of the fluorine dimer and the pseudo-Jahn-Teller distortion of cyclobutadiene, demonstrating its applicability for multireference ground and excited states

    Microscopic Marangoni Flows Cannot Be Predicted on the Basis of Pressure Gradients.

    Get PDF
    A concentration gradient along a fluid-fluid interface can cause flow. On a microscopic level, this so-called Marangoni effect can be viewed as being caused by a gradient in the pressures acting on the fluid elements or as the chemical-potential gradients acting on the excess densities of different species at the interface. If the interface thickness can be ignored, all approaches should result in the same flow profile away from the interface. However, on a more microscopic scale, the different expressions result in different flow profiles, only one of which can be correct. Here we compare the results of direct nonequilibrium molecular dynamics simulations with the flows that are generated by pressure and chemical-potential gradients. We find that the approach based on the chemical-potential gradients agrees with the direct simulations, whereas the calculations based on the pressure gradients do not

    Complex adiabatic connection: A hidden non-Hermitian path from ground to excited states.

    Get PDF
    Processes related to electronically excited states are central in many areas of science; however, accurately determining excited-state energies remains a major challenge in theoretical chemistry. Recently, higher energy stationary states of non-linear methods have themselves been proposed as approximations to excited states, although the general understanding of the nature of these solutions remains surprisingly limited. In this letter, we present an entirely novel approach for exploring and obtaining excited stationary states by exploiting the properties of non-Hermitian Hamiltonians. Our key idea centres on performing analytic continuations of conventional quantum chemistry methods. Considering Hartree-Fock theory as an example, we analytically continue the electron-electron interaction to expose a hidden connectivity of multiple solutions across the complex plane, revealing a close resemblance between Coulson-Fischer points and non-Hermitian degeneracies. Finally, we demonstrate how a ground-state wave function can be morphed naturally into an excited-state wave function by constructing a well-defined complex adiabatic connection

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Energy Landscapes for Electronic Structure.

    No full text
    Orbital-optimized multiple self-consistent-field (SCF) solutions are increasingly being interpreted as mean-field approximations of diabatic or excited electronic states. However, surprisingly little is known about the topology of the electronic energy landscape from which these multiple solutions emerge. In this contribution, we extend energy landscape methods, developed for investigating molecular potential energy surfaces, to investigate and understand the structure of the electronic SCF energy surface. Using analytic gradients and Hessians, we systematically identify every real SCF minimum for the prototypical H4 molecule with the 3-21G basis set, and the index-1 saddles that connect these minima. The resulting SCF energy landscape has a double-funnel structure, with no high-energy local minima. The effect of molecular symmetry on the pathways is analyzed, and we demonstrate how the SCF energy landscape changes with the basis set, SCF potential, molecular structure, and spin state. These results provide guiding principles for the future development of algorithms to systematically identify multiple SCF solutions from an orbital optimization perspective

    Parity-Time Symmetry in Hartree-Fock Theory.

    No full text
    PT-symmetry-invariance with respect to combined space reflection P and time reversal T-provides a weaker condition than (Dirac) Hermiticity for ensuring a real energy spectrum of a general non-Hermitian Hamiltonian. PT-symmetric Hamiltonians therefore form an intermediate class between Hermitian and non-Hermitian Hamiltonians. In this work, we derive the conditions for PT-symmetry in the context of electronic structure theory and, specifically, within the Hartree-Fock (HF) approximation. We show that the HF orbitals are symmetric with respect to the PT operator if and only if the effective Fock Hamiltonian is PT-symmetric, and vice versa. By extension, if an optimal self-consistent solution is invariant under PT, then its eigenvalues and corresponding HF energy must be real. Moreover, we demonstrate how one can construct explicitly PT-symmetric Slater determinants by forming PT-doublets (i.e., pairing each occupied orbital with its PT-transformed analogue), allowing PT-symmetry to be conserved throughout the self-consistent process. Finally, considering the H2 molecule as an illustrative example, we observe PT-symmetry in the HF energy landscape and find that the spatially symmetry-broken unrestricted HF wave functions (i.e., diradical configurations) are PT-symmetric, while the spatially symmetry-broken restricted HF wave functions (i.e., ionic configurations) break PT-symmetry.Royal Society, Cambridge Trus
    corecore