1,462 research outputs found
Comparative analysis of quantitative trait loci for body weight, growth rate and growth curve parameters from 3 to 72 weeks of age in female chickens of a broiler-layer cross
Background: Comparisons of quantitative trait loci (QTL) for growth and parameters of growth curves assist in understanding the genetics and ultimately the physiology of growth. Records of body weight at 3, 6, 12, 24, 48 and 72 weeks of age and growth rate between successive age intervals of about 500 F female chickens of the Roslin broiler-layer cross were available for analysis. These data were analysed to detect and compare QTL for body weight, growth rate and parameters of the Gompertz growth function.Results: Over 50 QTL were identified for body weight at specific ages and most were also detected in the nearest preceding and/or subsequent growth stage. The sum of the significant and suggestive additive effects for bodyweight at specific ages accounted for 23-43% of the phenotypic variation. A single QTL for body weight on chromosome 4 at 48 weeks of age had the largest additive effect (550.4 ± 68.0 g, 11.5% of the phenotypic variation) and a QTL at a similar position accounted 14.5% of the phenotypic variation at 12 weeks of age. Age specific QTL for growth rate were detected suggesting that there are specific genes that affect developmental processes during the different stages of growth. Relatively few QTL influencing Gompertz growth curve parameters were detected and overlapped with loci affecting growth rate. Dominance effects were generally not significant but from 12 weeks of age they exceeded the additive effect in a few cases. No evidence for epistatic QTL pairs was found.Conclusions: The results confirm the location for body weight and body weight gain during growth that were identified in previous studies and were consistent with QTL for the parameters of the Gompertz growth function. Chromosome 4 explained a relatively large proportion of the observed growth variation across the different ages, and also harboured most of the detected QTL for Gompertz parameters, confirming its importance in controlling growth. Very few QTL were detected for body weight or gain at 48 and 72 weeks of age, probably reflecting the effect of differences in reproduction and random environmental effects
A TESS Dress Rehearsal: Planetary Candidates and Variables from K2 Campaign 17T
We produce light curves for all ∼34,000 targets observed with K2 in Campaign 17 (C17), identifying 34 planet candidates, 184 eclipsing binaries, and other 222 periodic variables. The forward-facing direction of the C17 field means follow-up can begin immediately now that the campaign has concluded and interesting targets have been identified. The C17 field has a large overlap with C6, so this latest campaign also offers an infrequent opportunity to study a large number of targets already observed in a previous K2 campaign. The timing of the C17 data release, shortly before science operations begin with the Transiting Exoplanet Survey Satellite (TESS), also lets us exercise some of the tools and methods developed for identification and dissemination of planet candidates from TESS. We find excellent agreement between these results and those identified using only K2-based tools. Among our planet candidates are several planet candidates with sizes <4 R[subscript ⊕] and orbiting stars with Kp ≲ 10 (indicating good RV targets of the sort TESS hopes to find) and a Jupiter-sized single-transit event around a star already hosting a 6 day planet candidate. Key words: methods, data analysis, planets and satellites, detection – techniques, photometricUnited States. National Aeronautics and Space Administration (K2GO Grant 80NSSC18K0308
TESS Discovery of a Transiting Super-Earth in the Mensae System
We report the detection of a transiting planet around Mensae (HD
39091), using data from the Transiting Exoplanet Survey Satellite (TESS). The
solar-type host star is unusually bright (V=5.7) and was already known to host
a Jovian planet on a highly eccentric, 5.7-year orbit. The newly discovered
planet has a size of and an orbital period of 6.27
days. Radial-velocity data from the HARPS and AAT/UCLES archives also displays
a 6.27-day periodicity, confirming the existence of the planet and leading to a
mass determination of . The star's proximity and
brightness will facilitate further investigations, such as atmospheric
spectroscopy, asteroseismology, the Rossiter--McLaughlin effect, astrometry,
and direct imaging.Comment: Accepted for publication ApJ Letters. This letter makes use of the
TESS Alert data, which is currently in a beta test phase. The discovery light
curve is included in a table inside the arxiv submissio
TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844
Data from the newly-commissioned \textit{Transiting Exoplanet Survey
Satellite} (TESS) has revealed a "hot Earth" around LHS 3844, an M dwarf
located 15 pc away. The planet has a radius of and
orbits the star every 11 hours. Although the existence of an atmosphere around
such a strongly irradiated planet is questionable, the star is bright enough
(, ) for this possibility to be investigated with transit and
occultation spectroscopy. The star's brightness and the planet's short period
will also facilitate the measurement of the planet's mass through Doppler
spectroscopy.Comment: 10 pages, 4 figures. Submitted to ApJ Letters. This letter makes use
of the TESS Alert data, which is currently in a beta test phase, using data
from the pipelines at the TESS Science Office and at the TESS Science
Processing Operations Cente
Nature-Based Interventions for Improving Health and Wellbeing : The Purpose, the People and the Outcomes
Engagement with nature is an important part of many people's lives, and the health and wellbeing benefits of nature-based activities are becoming increasingly recognised across disciplines from city planning to medicine. Despite this, urbanisation, challenges of modern life and environmental degradation are leading to a reduction in both the quantity and the quality of nature experiences. Nature-based health interventions (NBIs) can facilitate behavioural change through a somewhat structured promotion of nature-based experiences and, in doing so, promote improved physical, mental and social health and wellbeing. We conducted a Delphi expert elicitation process with 19 experts from seven countries (all named authors on this paper) to identify the different forms that such interventions take, the potential health outcomes and the target beneficiaries. In total, 27 NBIs were identified, aiming to prevent illness, promote wellbeing and treat specific physical, mental or social health and wellbeing conditions. These interventions were broadly categorized into those that change the environment in which people live, work, learn, recreate or heal (for example, the provision of gardens in hospitals or parks in cities) and those that change behaviour (for example, engaging people through organized programmes or other activities). We also noted the range of factors (such as socioeconomic variation) that will inevitably influence the extent to which these interventions succeed. We conclude with a call for research to identify the drivers influencing the effectiveness of NBIs in enhancing health and wellbeing.Peer reviewe
Recommended from our members
Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.
Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants
Modulation of the Proteostasis Network Promotes Tumor Resistance to Oncogenic KRAS Inhibitors
Despite substantial advances in targeting mutant KRAS, tumor resistance to KRAS inhibitors (KRASi) remains a major barrier to progress. Here, we report proteostasis reprogramming as a key convergence point of multiple KRASi-resistance mechanisms. Inactivation of oncogenic KRAS down-regulated both the heat shock response and the inositol-requiring enzyme 1α (IRE1α) branch of the unfolded protein response, causing severe proteostasis disturbances. However, IRE1α was selectively reactivated in an ER stress-independent manner in acquired KRASi-resistant tumors, restoring proteostasis. Oncogenic KRAS promoted IRE1α protein stability through extracellular signal-regulated kinase (ERK)-dependent phosphorylation of IRE1α, leading to IRE1α disassociation from 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) E3-ligase. In KRASi-resistant tumors, both reactivated ERK and hyperactivated AKT restored IRE1α phosphorylation and stability. Suppression of IRE1α overcame resistance to KRASi. This study reveals a druggable mechanism that leads to proteostasis reprogramming and facilitates KRASi resistance
- …