57 research outputs found

    Prevalence and occupational exposure to zoonotic diseases in high-risk populations in the Free State Province, South Africa

    Get PDF
    IntroductionZoonotic diseases are responsible for 2.5 billion human cases globally and approximately 2.7 million deaths annually. Surveillance of animal handlers and livestock for zoonotic pathogens contributes to understanding the true disease burden and risk factors within a community. This study investigated the prevalence of selected zoonoses in cattle, farm workers and occupational exposure to endemic zoonotic diseases and their associated risk factors.MethodsSputum samples from farmworkers were screened for Mycobacterium bovis. Blood specimens from farmworkers and archived sera were tested for serological evidence of Brucella sp., hantaviruses, and Leptospira sp. Communal and commercial cattle herds were tested for bovine tuberculosis and brucellosis.ResultsMycobacterium bovis was not isolated from human samples. A total of 327 human sera were screened, and 35/327 (10.7%) were Brucella sp. IgG positive, 17/327 (5.2%) Leptospira sp. IgM positive, and 38/327 (11.6%) hantavirus IgG positive (95% CI). A higher proportion of Brucella sp. IgG-positive samples were detected among veterinarians (value of p = 0.0006). Additionally, two cattle from a commercial dairy farm were bovine tuberculosis (bTB) positive using the bTB skin test and confirmatory interferon-gamma assay. A higher percentage of confirmed brucellosis-positive animals were from communal herds (8.7%) compared to commercial herds (1.1%).DiscussionThese findings highlight the brucellosis and M. bovis prevalence in commercial and communal herds, the zoonotic disease risk in commercial and subsistence farming in developing countries, and the occupational and rural exposure risk to zoonotic pathogens

    Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen

    Get PDF
    Re-emergence of chikungunya virus, a mosquito-transmitted pathogen, is of serious public health concern. In the past 15 years, after decades of infrequent, sporadic outbreaks, the virus has caused major epidemic outbreaks in Africa, Asia, the Indian Ocean, and more recently the Caribbean and the Americas. Chikungunya virus is mainly transmitted by Aedes aegypti mosquitoes in tropical and subtropical regions, but the potential exists for further spread because of genetic adaptation of the virus to Aedes albopictus, a species that thrives in temperate regions. Chikungunya virus represents a substantial health burden to affected populations, with symptoms that include severe joint and muscle pain, rashes, and fever, as well as prolonged periods of disability in some patients. The inflammatory response coincides with raised levels of immune mediators and infiltration of immune cells into infected joints and surrounding tissues. Animal models have provided insights into disease pathology and immune responses. Although host innate and adaptive responses have a role in viral clearance and protection, they can also contribute to virus-induced immune pathology. Understanding the mechanisms of host immune responses is essential for the development of treatments and vaccines. Inhibitory compounds targeting key inflammatory pathways, as well as attenuated virus vaccines, have shown some success in animal models, including an attenuated vaccine strain based on an isolate from La Reunion incorporating an internal ribosome entry sequence that prevents the virus from infecting mosquitoes and a vaccine based on virus-like particles expressing envelope proteins. However, immune correlates of protection, as well as the safety of prophylactic and therapeutic candidates, are important to consider for their application in chikungunya infections. In this Review, we provide an update on chikungunya virus with regard to its epidemiology, molecular virology, virus-host interactions, immunological responses, animal models, and potential antiviral therapies and vaccines

    Yellow Fever Outbreak, Southern Sudan, 2003

    Get PDF
    In May 2003, an outbreak of fatal hemorrhagic fever, caused by yellow fever virus, occurred in southern Sudan. Phylogenetic analysis showed that the virus belonged to the East African genotype, which supports the contention that yellow fever is endemic in East Africa with the potential to cause large outbreaks in humans

    ACE2 and TMPRSS2 variation in savanna monkeys (Chlorocebus spp.): potential risk for zoonotic/anthroponotic transmission of SARS-CoV-2 and a potential model for functional studies

    Get PDF
    The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has devastated health infrastructure around the world. Both ACE2 (an entry receptor) and TMPRSS2 (used by the virus for spike protein priming) are key proteins to SARS-CoV-2 cell entry, enabling progression to COVID-19 in humans. Comparative genomic research into critical ACE2 binding sites, associated with the spike receptor binding domain, has suggested that African and Asian primates may also be susceptible to disease from SARS-CoV-2 infection. Savanna monkeys (Chlorocebus spp.) are a widespread non-human primate with well-established potential as a bi-directional zoonotic/anthroponotic agent due to high levels of human interaction throughout their range in sub-Saharan Africa and the Caribbean. To characterize potential functional variation in savanna monkey ACE2 and TMPRSS2, we inspected recently published genomic data from 245 savanna monkeys, including 163 wild monkeys from Africa and the Caribbean and 82 captive monkeys from the Vervet Research Colony (VRC). We found several missense variants. One missense variant in ACE2 (X:14,077,550; Asp30Gly), common in Ch. sabaeus, causes a change in amino acid residue that has been inferred to reduce binding efficiency of SARS-CoV-2, suggesting potentially reduced susceptibility. The remaining populations appear as susceptible as humans, based on these criteria for receptor usage. All missense variants observed in wild Ch. sabaeus populations are also present in the VRC, along with two splice acceptor variants (at X:14,065,076) not observed in the wild sample that are potentially disruptive to ACE2 function. The presence of these variants in the VRC suggests a promising model for SARS-CoV-2 infection and vaccine and therapy development. In keeping with a One Health approach, characterizing actual susceptibility and potential for bi-directional zoonotic/anthroponotic transfer in savanna monkey populations may be an important consideration for controlling COVID-19 epidemics in communities with frequent human/non-human primate interactions that, in many cases, may have limited health infrastructure.P40 OD010965 - NIH HHSPublished versio

    Mammarenaviruses of rodents, South Africa and Zimbabwe

    Get PDF
    We conducted a survey for group-specific indirect immunofluorescence antibody to mammarenaviruses by using Lassa fever and Mopeia virus antigens on serum specimens of 5,363 rodents of 33 species collected in South Africa and Zimbabwe during 1964–1994. Rodents were collected for unrelated purposes or for this study and stored at −70°C. We found antibody to be widely distributed in the 2 countries; antibody was detected in serum specimens of 1.2%–31.8% of 14 species of myomorph rodents, whereas 19 mammarenavirus isolates were obtained from serum specimens and viscera of 4 seropositive species. Phylogenetic analysis on the basis of partial nucleoprotein sequences indicates that 14 isolates from Mastomys natalensis, the Natal multimammate mouse, were Mopeia virus, whereas Merino Walk virus was characterized as a novel virus in a separate study. The remaining 4 isolates from 3 rodent species potentially constitute novel viruses pending full characterization.http://www.cdc.gov/eidam2022Medical VirologyMicrobiology and Plant PathologyUP Centre for Sustainable Malaria Control (UP CSMC)Veterinary Tropical Disease

    Factors affecting the use of biosecurity measures for the protection of ruminant livestock and farm workers against infectious diseases in central South Africa

    Get PDF
    Biosecurity measures have been introduced to limit economic losses and zoonotic exposures to humans by preventing and controlling animal diseases. However, they are implemented on individual farms with varying frequency. The goal of this study was to evaluate which biosecurity measures were used by farmers to prevent infectious diseases in ruminant livestock and to identify factors that influenced these decisions. We conducted a survey in 264 ruminant livestock farmers in a 40,000 km2 area in the Free State and Northern Cape provinces of South Africa. We used descriptive statistics, to characterize biosecurity measures and farm attributes, then multivariable binomial regression to assess the strength of the association between the attributes and the implementation of biosecurity measures including property fencing, separate equipment use on different species, separate rearing of species, isolation of sick animals, isolation of pregnant animals, quarantine of new animals, animal transport cleaning, vaccination, tick control and insect control. Ninety-nine percent of farmers reported using at least one of the 10 biosecurity measures investigated (median [M]: 6; range: 0–10). The most frequently used biosecurity measures were tick control (81%, 214 out of 264), vaccination (80%, 211 out of 264) and isolation of sick animals (72%, 190 out of 264). More biosecurity measures were used on farms with 65–282 animals (M: 6; odds ratio [OR]: 1.52) or farms with 283–12,030 animals (M: 7; OR: 1.87) than on farms with fewer than 65 animals (M: 4). Furthermore, farmers who kept two animal species (M: 7; OR: 1.41) or three or more species (M: 7) used more biosecurity measures than single-species operations (M: 4). Farmers with privately owned land used more biosecurity measures (M: 6; OR: 1.51) than those grazing their animals on communal land (M: 3.5). Farms that reported previous Rift Valley fever (RVF) outbreaks used more biosecurity measures (M: 7; OR: 1.25) compared with farms without RVF reports (M: 6) and those that purchased animals in the 12 months prior to the survey (M: 7; OR: 1.19) compared with those that did not (M: 6). When introducing new animals into their herds (n = 122), most farmers used fewer biosecurity measures than they did for their existing herd: 34% (41 out of 122) used multiple biosecurity measures like those of vaccination, tick control, quarantine or antibiotic use, whereas 36% (44 out of 122) used only one and 30% (37 out of 122) used none. Certain farm features, primarily those related to size and commercialization, were associated with more frequent use of biosecurity measures. Given the variation in the application of biosecurity measures, more awareness and technical assistance are needed to support the implementation of a biosecurity management plan appropriate for the type of farm operation and available resources.DATA AVAILABILITY STATEMENT : The data that support the study's findings and that can be disclosed per IRB protocol are available upon request from EcoHealth Alliance, 520 Eighth Ave Ste 1200, New York, NY 10018, from Melinda K. Rostal ([email protected]).The project depicted is sponsored by the U.S. Department of Defense, Defense Threat Reduction Agency.http://wileyonlinelibrary.com/journal/tbedhj2022Production Animal Studie

    Yellow Fever Outbreak, Imatong, Southern Sudan

    Get PDF
    In May 2003, the World Health Organization received reports about a possible outbreak of a hemorrhagic disease of unknown cause in the Imatong Mountains of southern Sudan. Laboratory investigations were conducted on 28 serum samples collected from patients in the Imatong region. Serum samples from 13 patients were positive for immunoglobulin M antibody to flavivirus, and serum samples from 5 patients were positive by reverse transcription–polymerase chain reaction with both the genus Flavivirus–reactive primers and yellow fever virus–specific primers. Nucleotide sequencing of the amplicons obtained with the genus Flavivirus oligonucleotide primers confirmed yellow fever virus as the etiologic agent. Isolation attempts in newborn mice and Vero cells from the samples yielded virus isolates from five patients. Rapid and accurate laboratory diagnosis enabled an interagency emergency task force to initiate a targeted vaccination campaign to control the outbreak

    Phylogenetic Relationships of Southern African West Nile Virus Isolates

    Get PDF
    Phylogenetic relationships were examined for 29 southern African West Nile virus (formal name West Nile virus [WNV]) isolates from various sources in four countries from 1958 to 2001. In addition sequence data were retrieved from GenBank for another 23 WNV isolates and Kunjin and Japanese encephalitis viruses. All isolates belonged to two lineages. Lineage 1 isolates were from central and North Africa, Europe, Israel, and North America; lineage 2 isolates were from central and southern Africa and Madagascar. No strict correlation existed between grouping and source of virus isolate, pathogenicity, geographic distribution, or year of isolation. Some southern African isolates have been associated with encephalitis in a human, a horse, and a dog and with fatal hepatitis in a human and death of an ostrich chick

    Taxonomy of the order Bunyavirales : second update 2018

    Get PDF
    In October 2018, the order Bunyavirales was amended by inclusion of the family Arenaviridae, abolishment of three families, creation of three new families, 19 new genera, and 14 new species, and renaming of three genera and 22 species. This article presents the updated taxonomy of the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).Non peer reviewe
    corecore