6,741 research outputs found

    GRB Energetics in the Swift Era

    Full text link
    We examine the rest frame energetics of 76 gamma-ray bursts (GRBs) with known redshift that were detected by the Swift spacecraft and monitored by the satellite's X-ray Telescope (XRT). Using the bolometric fluence values estimated in Butler et al. 2007b and the last XRT observation for each event, we set a lower limit the their collimation corrected energy Eg and find that a 68% of our sample are at high enough redshift and/or low enough fluence to accommodate a jet break occurring beyond the last XRT observation and still be consistent with the pre-Swift Eg distribution for long GRBs. We find that relatively few of the X-ray light curves for the remaining events show evidence for late-time decay slopes that are consistent with that expected from post jet break emission. The breaks in the X-ray light curves that do exist tend to be shallower and occur earlier than the breaks previously observed in optical light curves, yielding a Eg distribution that is far lower than the pre-Swift distribution. If these early X-ray breaks are not due to jet effects, then a small but significant fraction of our sample have lower limits to their collimation corrected energy that place them well above the pre-Swift Eg distribution. Either scenario would necessitate a much wider post-Swift Eg distribution for long cosmological GRBs compared to the narrow standard energy deduced from pre-Swift observations. We note that almost all of the pre-Swift Eg estimates come from jet breaks detected in the optical whereas our sample is limited entirely to X-ray wavelengths, furthering the suggestion that the assumed achromaticity of jet breaks may not extend to high energies.Comment: 30 pages, 10 figures, Accepted to Ap

    Neutrino Signatures and the Neutrino-Driven Wind in Binary Neutron Star Mergers

    Get PDF
    We present VULCAN/2D multigroup flux-limited-diffusion radiation-hydrodynamics simulations of binary neutron star mergers, using the Shen equation of state, covering ≳ 100 ms, and starting from azimuthal-averaged two-dimensional slices obtained from three-dimensional smooth-particle-hydrodynamics simulations of Rosswog & Price for 1.4M☉ (baryonic) neutron stars with no initial spins, co-rotating spins, or counter-rotating spins. Snapshots are post-processed at 10 ms intervals with a multiangle neutrino-transport solver. We find polar-enhanced neutrino luminosities, dominated by ¯νe and “νμ” neutrinos at the peak, although νe emission may be stronger at late times. We obtain typical peak neutrino energies for νe, ¯νe, and “νμ” of ∼12, ∼16, and ∼22 MeV, respectively. The supermassive neutron star (SMNS) formed from the merger has a cooling timescale of ≾ 1 s. Charge-current neutrino reactions lead to the formation of a thermally driven bipolar wind with (M·) ∼ 10^−3 M☉ s^−1 and baryon-loading in the polar regions, preventing any production of a γ-ray burst prior to black hole formation. The large budget of rotational free energy suggests that magneto-rotational effects could produce a much-greater polar mass loss. We estimate that ≾ 10^−4 M☉ of material with an electron fraction in the range 0.1–0.2 becomes unbound during this SMNS phase as a result of neutrino heating. We present a new formalism to compute the νi ¯νi annihilation rate based on moments of the neutrino-specific intensity computed with our multiangle solver. Cumulative annihilation rates, which decay as ∼t^−1.8, decrease over our 100 ms window from a few ×1050 to ∼ 1049 erg s−1, equivalent to a few ×10^54 to ∼10^53 e−e+ pairs per second

    Mu and Tau Neutrino Thermalization and Production in Supernovae: Processes and Timescales

    Full text link
    We investigate the rates of production and thermalization of νμ\nu_\mu and ντ\nu_\tau neutrinos at temperatures and densities relevant to core-collapse supernovae and protoneutron stars. Included are contributions from electron scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and nucleon scattering. For the scattering processes, in order to incorporate the full scattering kinematics at arbitrary degeneracy, the structure function formalism developed by Reddy et al. (1998) and Burrows and Sawyer (1998) is employed. Furthermore, we derive formulae for the total and differential rates of nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy in asymmetric matter. We find that electron scattering dominates nucleon scattering as a thermalization process at low neutrino energies (ϵν≲10\epsilon_\nu\lesssim 10 MeV), but that nucleon scattering is always faster than or comparable to electron scattering above ϵν≃10\epsilon_\nu\simeq10 MeV. In addition, for ρ≳1013\rho\gtrsim 10^{13} g cm−3^{-3}, T≲14T\lesssim14 MeV, and neutrino energies ≲60\lesssim60 MeV, nucleon-nucleon bremsstrahlung always dominates electron-positron annihilation as a production mechanism for νμ\nu_\mu and ντ\nu_\tau neutrinos.Comment: 29 pages, LaTeX (RevTeX), 13 figures, submitted to Phys. Rev. C. Also to be found at anonymous ftp site http://www.astrophysics.arizona.edu; cd to pub/thompso

    The Proto-neutron Star Phase of the Collapsar Model and the Route to Long-soft Gamma-ray Bursts and Hypernovae

    Full text link
    Recent stellar evolutionary calculations of low-metallicity massive fast-rotating main-sequence stars yield iron cores at collapse endowed with high angular momentum. It is thought that high angular momentum and black hole formation are critical ingredients of the collapsar model of long-soft gamma-ray bursts (GRBs). Here, we present 2D multi-group, flux-limited-diffusion MHD simulations of the collapse, bounce, and immediate post-bounce phases of a 35-Msun collapsar-candidate model of Woosley & Heger. We find that, provided the magneto-rotational instability (MRI) operates in the differentially-rotating surface layers of the millisecond-period neutron star, a magnetically-driven explosion ensues during the proto-neutron star phase, in the form of a baryon-loaded non-relativistic jet, and that a black hole, central to the collapsar model, does not form. Paradoxically, and although much uncertainty surrounds stellar mass loss, angular momentum transport, magnetic fields, and the MRI, current models of chemically homogeneous evolution at low metallicity yield massive stars with iron cores that may have too much angular momentum to avoid a magnetically-driven, hypernova-like, explosion in the immediate post-bounce phase. We surmise that fast rotation in the iron core may inhibit, rather than enable, collapsar formation, which requires a large angular momentum not in the core but above it. Variations in the angular momentum distribution of massive stars at core collapse might explain both the diversity of Type Ic supernovae/hypernovae and their possible association with a GRB. A corollary might be that, rather than the progenitor mass, the angular momentum distribution, through its effect on magnetic field amplification, distinguishes these outcomes.Comment: 5 pages, 1 table, 2 figures, accepted to ApJ

    z'-band Ground-Based Detection of the Secondary Eclipse of WASP-19b

    Get PDF
    We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z'-band using the ULTRACAM triple-beam CCD camera mounted on the NTT. The measurement shows a 0.088\pm0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse centre, T0, of 2455578.7676 HJD, consistent with a circular orbit. Our measurement of the secondary eclipse depth is also compared to model atmospheres of WASP-19b, and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.Comment: 20 pages, 10 figures. Published in the ApJ Supplement serie

    Chandra observations of SN 1987A: the soft X-ray light curve revisited

    Get PDF
    We report on the present stage of SN 1987A as observed by the Chandra X-ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by ~6 x 10 ^-13 erg s^-1 cm^-2 per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.Comment: Accepted for publication by ApJ, 7 pages, 5 figure

    Ab initio Folding Potentials for Nucleon-Nucleus Scattering based on NCSM One-Body Densities

    Get PDF
    Calculating microscopic optical potentials for elastic nucleon-nucleus scattering has already led to large body of work in the past. For folding first-order calculations the nucleon-nucleon (NN) interaction and the one-body density of the nucleus were taken as input to rigorous calculations in a spectator expansion of the multiple scattering series. Based on the Watson expansion of the multiple scattering series we employ a nonlocal translationally invariant nuclear density derived from a chiral next-to-next-to-leading order (NNLO) and the very same interaction for consistent full-folding calculation of the effective (optical) potential for nucleon-nucleus scattering for light nuclei. We calculate scattering observables, such as total, reaction, and differential cross sections as well as the analyzing power and the spin-rotation parameter, for elastic scattering of protons and neutrons from 4^4He, 6^{6}He, 12^{12}C, and 16^{16}O, in the energy regime between 100 and 200~MeV projectile kinetic energy, and compare to available data. Our calculations show that the effective nucleon-nucleus potential obtained from the first-order term in the spectator expansion of the multiple scattering expansion describes experiments very well to about 60 degrees in the center-of-mass frame, which coincides roughly with the validity of the NNLO chiral interaction used to calculate both the NN amplitudes and the one-body nuclear density.Comment: 10 pages, 14 figures, 1 tabl

    Jet Breaks in Short Gamma-Ray Bursts. I: The Uncollimated Afterglow of GRB 050724

    Full text link
    We report the results of the \chandra observations of the \swift-discovered short Gamma-Ray Burst GRB 050724. \chandra observed this burst twice, about two days after the burst and a second time three weeks later. The first \chandra pointing occurred at the end of a strong late-time flare. About 150 photons were detected during this 49.3 ks observation in the 0.4-10.0 keV range. The spectral fit is in good agreement with spectral analysis of earlier \swift XRT data. In the second \chandra pointing the afterglow was clearly detected with 8 background-subtracted photons in 44.6 ks. From the combined \swift XRT and \chandra-ACIS-S light curve we find significant flaring superposed on an underlying power-law decay slope of α\alpha=0.98−0.09+0.11^{+0.11}_{-0.09}. There is no evidence for a break between about 1 ks after the burst and the last \chandra pointing about three weeks after the burst. The non-detection of a jet break places a lower limit of 25∘^{\circ} on the jet opening angle, indicating that the outflow is less strongly collimated than most previously-reported long GRBs. This implies that the beaming corrected energy of GRB 050724 is at least 4×10494\times 10^{49} ergs.Comment: 7 pages, ApJ acceped, scheduled for December 20, 2006, ApJ, 65

    The Role of Collective Neutrino Flavor Oscillations in Core-Collapse Supernova Shock Revival

    Get PDF
    We explore the effects of collective neutrino flavor oscillations due to neutrino-neutrino interactions on the neutrino heating behind a stalled core-collapse supernova shock. We carry out axisymmetric (2D) radiation-hydrodynamic core-collapse supernova simulations, tracking the first 400 ms of the post-core-bounce evolution in 11.2 solar mass and 15 solar mass progenitor stars. Using inputs from these 2D simulations, we perform neutrino flavor oscillation calculations in multi-energy single-angle and multi-angle single-energy approximations. Our results show that flavor conversions do not set in until close to or outside the stalled shock, enhancing heating by not more than a few percent in the most optimistic case. Consequently, we conclude that the postbounce pre-explosion dynamics of standard core-collapse supernovae remains unaffected by neutrino oscillations. Multi-angle effects in regions of high electron density can further inhibit collective oscillations, strengthening our conclusion.Comment: v2: Added multi-angle calculations. Conclusions unchanged. 16 pages, 7 figures. Accepted to Phys. Rev. D after revisions: 15 Sept 2011 (major), 24 Jan 2012 (minor

    GRB 050713A: High Energy Observations of the GRB Prompt and Afterglow Emission

    Full text link
    Swift discovered GRB 050713A and slewed promptly to begin observing with its narrow field instruments 72.6 seconds after the burst onset, while the prompt gamma-ray emission was still detectable in the BAT. Simultaneous emission from two flares is detected in the BAT and XRT. This burst marks just the second time that the BAT and XRT have simultaneously detected emission from a burst and the first time that both instruments have produced a well sampled, simultaneous dataset covering multiple X-ray flares. The temporal rise and decay parameters of the flares are consistent with the internal shock mechanism. In addition to the Swift coverage of GRB 050713A, we report on the Konus-Wind (K-W) detection of the prompt emission in the energy range 18-1150 keV, an upper limiting GeV measurement of the prompt emission made by the MAGIC imaging atmospheric Cherenkov telescope and XMM-Newton observations of the afterglow. Simultaneous observation between Swift XRT and XMM-Newton produce consistent results, showing a break in the lightcurve at T+~15ks. Together, these four observatories provide unusually broad spectral coverage of the prompt emission and detailed X-ray follow-up of the afterglow for two weeks after the burst trigger. Simultaneous spectral fits of K-W with BAT and BAT with XRT data indicate that an absorbed broken powerlaw is often a better fit to GRB flares than a simple absorbed powerlaw. These spectral results together with the rapid temporal rise and decay of the flares suggest that flares are produced in internal shocks due to late time central engine activity.Comment: 22 pages, 6 tables, 10 figures; Submitted to the Astrophysical Journa
    • …
    corecore