research

Neutrino Signatures and the Neutrino-Driven Wind in Binary Neutron Star Mergers

Abstract

We present VULCAN/2D multigroup flux-limited-diffusion radiation-hydrodynamics simulations of binary neutron star mergers, using the Shen equation of state, covering ≳ 100 ms, and starting from azimuthal-averaged two-dimensional slices obtained from three-dimensional smooth-particle-hydrodynamics simulations of Rosswog & Price for 1.4M☉ (baryonic) neutron stars with no initial spins, co-rotating spins, or counter-rotating spins. Snapshots are post-processed at 10 ms intervals with a multiangle neutrino-transport solver. We find polar-enhanced neutrino luminosities, dominated by ¯νe and “νμ” neutrinos at the peak, although νe emission may be stronger at late times. We obtain typical peak neutrino energies for νe, ¯νe, and “νμ” of ∼12, ∼16, and ∼22 MeV, respectively. The supermassive neutron star (SMNS) formed from the merger has a cooling timescale of ≾ 1 s. Charge-current neutrino reactions lead to the formation of a thermally driven bipolar wind with (M·) ∼ 10^−3 M☉ s^−1 and baryon-loading in the polar regions, preventing any production of a γ-ray burst prior to black hole formation. The large budget of rotational free energy suggests that magneto-rotational effects could produce a much-greater polar mass loss. We estimate that ≾ 10^−4 M☉ of material with an electron fraction in the range 0.1–0.2 becomes unbound during this SMNS phase as a result of neutrino heating. We present a new formalism to compute the νi ¯νi annihilation rate based on moments of the neutrino-specific intensity computed with our multiangle solver. Cumulative annihilation rates, which decay as ∼t^−1.8, decrease over our 100 ms window from a few ×1050 to ∼ 1049 erg s−1, equivalent to a few ×10^54 to ∼10^53 e−e+ pairs per second

    Similar works