369 research outputs found

    Determining the response of African biota to climate change: using the past to model the future

    Get PDF
    Prediction of biotic responses to future climate change in tropical Africa tends to be based on two modelling approaches: bioclimatic species envelope models and dynamic vegetation models. Another complementary but underused approach is to examine biotic responses to similar climatic changes in the past as evidenced in fossil and historical records. This paper reviews these records and highlights the information that they provide in terms of understanding the local-and regional-scale responses of African vegetation to future climate change. A key point that emerges is that a move to warmer and wetter conditions in the past resulted in a large increase in biomass and a range distribution of woody plants up to 400-500 km north of its present location, the so-called greening of the Sahara. By contrast, a transition to warmer and drier conditions resulted in a reduction in woody vegetation in many regions and an increase in grass/savanna-dominated landscapes. The rapid rate of climate warming coming into the current interglacial resulted in a dramatic increase in community turnover, but there is little evidence for widespread extinctions. However, huge variation in biotic response in both space and time is apparent with, in some cases, totally different responses to the same climatic driver. This highlights the importance of local features such as soils, topography and also internal biotic factors in determining responses and resilience of the African biota to climate change, information that is difficult to obtain from modelling but is abundant in palaeoecological records

    Modelling the spatial distribution of DEM Error

    Get PDF
    Assessment of a DEM’s quality is usually undertaken by deriving a measure of DEM accuracy – how close the DEM’s elevation values are to the true elevation. Measures such as Root Mean Squared Error and standard deviation of the error are frequently used. These measures summarise elevation errors in a DEM as a single value. A more detailed description of DEM accuracy would allow better understanding of DEM quality and the consequent uncertainty associated with using DEMs in analytical applications. The research presented addresses the limitations of using a single root mean squared error (RMSE) value to represent the uncertainty associated with a DEM by developing a new technique for creating a spatially distributed model of DEM quality – an accuracy surface. The technique is based on the hypothesis that the distribution and scale of elevation error within a DEM are at least partly related to morphometric characteristics of the terrain. The technique involves generating a set of terrain parameters to characterise terrain morphometry and developing regression models to define the relationship between DEM error and morphometric character. The regression models form the basis for creating standard deviation surfaces to represent DEM accuracy. The hypothesis is shown to be true and reliable accuracy surfaces are successfully created. These accuracy surfaces provide more detailed information about DEM accuracy than a single global estimate of RMSE

    Interplay between topography, fog and vegetation in the central South Arabian mountains revealed using a novel Landsat fog detection technique

    Get PDF
    In the central South Arabian mountains of Yemen and Oman, monsoon fog interception by the endemic cloud forest is essential for ecosystem functions and services. Yet, we know little about the local factors affecting fog distributions and their cumulative effects on vegetation. To examine these relationships, we developed a novel method of high-resolution fog detection using Landsat data, and validated the results using occurrence records of eight moisture-sensitive plant species. Regression tree analysis was then used to examine the topographic factors influencing fog distributions and the topoclimatic factors influencing satellite-derived vegetation greenness. We find that topography affects fog distributions. Specifically, steep windward slopes obstruct the inland movement of fog, resulting in heterogenous fog densities and hotspots of fog interception. We find that fog distributions explain patterns of vegetation greenness, and overall, that greenness increases with fog density. The layer of fog density describes patterns of vegetation greenness more accurately than topographic variables alone, and thus, we propose that regional vegetation patterns more closely follow a fog gradient, than an altitudinal gradient as previously supposed. The layer of fog density will enable an improved understanding of how species and communities, many of which are endemic, range-restricted, and in decline, respond to local variability in topoclimatic conditions

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    Sustainability, certification, and regulation of biochar

    Get PDF
    Biochar has a relatively long half-life in soil and can fundamentally alter soil properties, processes, and ecosystem services. The prospect of global-scale biochar application to soils highlights the importance of a sophisticated and rigorous certification procedure. The objective of this work was to discuss the concept of integrating biochar properties with environmental and socioeconomic factors, in a sustainable biochar certification procedure that optimizes complementarity and compatibility between these factors over relevant time periods. Biochar effects and behavior should also be modelled at temporal scales similar to its expected functional lifetime in soils. Finally, when existing soil data are insufficient, soil sampling and analysis procedures need to be described as part of a biochar certification procedure.O “biochar” tem um tempo de meia-vida no solo relativamente longo e pode alterar substancialmente as propriedades, processos e funções do solo. A perspectiva da aplicação de “biochar” aos solos, em escala global, evidencia a importância de se lhe atribuir um processo de certificação sofisticado e rigoroso. O objetivo deste trabalho foi discutir o conceito da integração das propriedades do “biochar” com os fatores ambientais e socioeconômicos relevantes do local de aplicação selecionado, como parte de um procedimento de certificação sustentável que otimize a complementaridade e a compatibilidade entre esses fatores, em períodos de tempo relevantes. Os efeitos e o comportamento do “biochar” devem, também, ser modelados em escalas temporais similares às de seu tempo de vida funcional nos solos do local selecionado. Finalmente, onde os dados existentes sobre as características do solo forem insuficientes, procedimentos de amostragem e análise do solo devem ser descritos como parte do procedimento de certificação do “biochar”.publishe

    Rethinking the learning space at work and beyond: The achievement of agency across the boundaries of work-related spaces and environments

    Get PDF
    This paper focuses on the notion of the learning space at work and discusses the extent to which its different configurations allow employees to exercise personal agency within a range of learning spaces. Although the learning space at work is already the subject of extensive research, the continuous development of the learning society and the development of new types of working spaces calls for further research to advance our knowledge and understanding of the ways that individuals exercise agency and learn in the workplace. Research findings suggest that the current perception of workplace learning is strongly related to the notion of the learning space, in which individuals and teams work, learn and develop their skills. The perception of the workplace as a site only for work-specific training is gradually changing, as workplaces are now acknowledged as sites for learning in various configurations, and as contributing to the personal development and social engagement of employees. This paper argues that personal agency is constructed in the workplace, and this process involves active interrelations between agency and three dimensions of the workplace (individual, spatial and organisational), identified through both empirical and theoretical research. The discussion is supported by data from two research projects on workplace learning in the United Kingdom. This paper thus considers how different configurations of the learning space and the boundaries between a range of work-related spaces facilitate the achievement of personal agency

    Role of Toll-Like Receptor (TLR) 2 in Experimental Bacillus cereus Endophthalmitis

    Get PDF
    Bacillus cereus causes a uniquely rapid and blinding intraocular infection, endophthalmitis. B. cereus replicates in the eye, synthesizes numerous toxins, and incites explosive intraocular inflammation. The mechanisms involved in the rapid and explosive intraocular immune response have not been addressed. Because Toll-like receptors (TLRs) are integral to the initial recognition of organisms during infection, we hypothesized that the uniquely explosive immune response observed during B. cereus endophthalmitis is directly influenced by the presence of TLR2, a known Gram-positive pathogen recognition receptor. To address this hypothesis, we compared the courses of experimental B. cereus endophthalmitis in wild type C57BL/6J mice to that of age-matched homozygous TLR2-/- mice. Output parameters included analysis of bacterial growth, inflammatory cell (PMN) infiltration, cytokine/chemokine kinetics, retinal function testing, and histology, with N≥4 eyes/assay/time point/mouse strain. B. cereus grew at similar rates to108 CFU/eye by 12 h, regardless of the mouse strain. Retinal function was preserved to a greater degree in infected TLR2-/- eyes compared to that of infected wild type eyes, but infected eyes of both mouse strains lost significant function. Retinal architecture was preserved in infected TLR2-/- eyes, with limited retinal and vitreal cellular infiltration compared to that of infected wild type eyes. Ocular myeloperoxidase activities corroborated these results. In general, TNFα, IFNγ, IL6, and KC were detected in greater concentrations in infected wild type eyes than in infected TLR2-/- eyes. The absence of TLR2 resulted in decreased intraocular proinflammatory cytokine/chemokine levels and altered recruitment of inflammatory cells into the eye, resulting in less intraocular inflammation and preservation of retinal architecture, and a slightly greater degree of retinal function. These results demonstrate TLR2 is an important component of the initial ocular response to B. cereus endophthalmitis
    corecore