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Abstract 

In the central South Arabian mountains of Yemen and Oman, monsoon fog interception by 

the endemic cloud forest is essential for ecosystem functions and services. Yet, we know little 

about the local factors affecting fog distributions and their cumulative effects on vegetation. 

To examine these relationships, we developed a novel method of high-resolution fog 

detection using Landsat data, and validated the results using occurrence records of eight 

moisture-sensitive plant species. Regression tree analysis was then used to examine the 

topographic factors influencing fog distributions and the topoclimatic factors influencing 

satellite-derived vegetation greenness. We find that topography affects fog distributions. 

Specifically, steep windward slopes obstruct the inland movement of fog, resulting in 

heterogenous fog densities and hotspots of fog interception. We find that fog distributions 
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explain patterns of vegetation greenness, and overall, that greenness increases with fog 

density. The layer of fog density describes patterns of vegetation greenness more accurately 

than topographic variables alone, and thus, we propose that regional vegetation patterns 

more closely follow a fog gradient, than an altitudinal gradient as previously supposed. The 

layer of fog density will enable an improved understanding of how species and communities, 

many of which are endemic, range-restricted, and in decline, respond to local variability in 

topoclimatic conditions. 

Keywords: topography, fog, vegetation, regression tree analysis (RTA), central South 

Arabian mountains (CSAM), Dhofar Oman, Mahra Yemen, monsoon, khareef, Anogeissus 

dhofarica, cloud forest, Normalized Difference Vegetation Index (NDVI) 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

1. Introduction 

Fog is an important hydrologic input in many ecosystems around the world (Bruijnzeel et al., 

2005). Fog interception by vegetation is the main process by which fog moisture and the 

nutrients it contains can enter an ecosystem, in addition to simple deposition (Weathers et 

al., 2006). In arid environments, particularly in coastal and montane locations, fog can 

supply a large part of the water balance. Water is often the primary limiting factor to 

vegetation growth and vegetation responses to fog are usually more pronounced than in 

areas with high rainfall (Hildebrandt et al., 2007). The spatial distribution of fog is often 

strongly affected by topography (Gultepe et al., 2007; Bruijnzeel et al., 2005). In turn, the 

distribution of fog can affect vegetation patterns (Scholte and De Geest, 2010; Martorell and 

Ezcurra, 2002; Cavelier and Guillermo, 1989; Hildebrandt and Eltahir, 2008). These 

relationships can underpin the ecohydrology in arid environments and provide a crucial 

freshwater source for people and nature. However, few studies have examined the interplay 

between topography, fog and vegetation at the landscape scale, although overlay analysis of 

these biospheric components has been used to predict tropical cloud forest distributions 

(Mulligan, 2010). In this study, we use a novel high-resolution fog detection technique, a 

suite of geospatial datasets, and regression tree analysis to examine the interplay between 

topography, fog and vegetation in the central South Arabian mountains.  

The central South Arabian mountains (CSAM) are located in the Mahra Governorate of 

Yemen and the Dhofar Governorate of Oman (Figure 1). They receive very dense fogs 

(visibility < 100 m) during the monsoon, popularly known as the khareef. From mid-June to 

mid-September, south-westerly winds cause an upwelling of cold sea water off the coast, 

lowering the sea temperature to c. 18 degrees. As warm moist winds blow over it, advection 

fogs form and build up against the south-facing mountain escarpments (Stanley Price et al., 

1988; Ghazanfar and Fisher, 1998). A temperature inversion, caused by warm northerly 

winds from the desert, limits the inland movement of fog (Kürschner et al., 2004; Friesen et 

al., 2018).  
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Figure 1. A map of the central South Arabian mountains in the Dhofar Governorate of Oman 

and the Mahra Governorate of Yemen, and their location in the Arabian Peninsula. The 

regression tree analysis (RTA) area, and the 2016 botanical survey sites, are shown.  

The monsoon fogs support the Hybantho durae-Anogeissetum dhofaricae, a drought 

deciduous cloud forest community (Kürschner et al., 2004). It is endemic to the CSAM and 

the remnants of a once continuous paleo-African flora (Meister et al., 2005). It comprises at 

least 262 floral species, many of which are endemic to the CSAM (Patzelt, 2015). The cloud 

forest is interspersed with grasslands dominated by Arthraxon junnarensis, Apluda mutica 

and Themeda quadrivalvis, and shrublands, such as the Euphorbia balsamifera cushion 

shrub community which occupies the high-altitude fringes of the monsoon zone (Patzelt, 

2011, 2015). Fog interception by the cloud forest is estimated to contribute as much water as 

rainfall (mean annual precipitation is 200 mm) to net precipitation (Hildebrandt et al., 

2007). The quantity of fog water intercepted by the locally dominant and endemic tree, 
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Anogeissus dhofarica (250% more than rainfall), is amongst the highest recorded for any 

tree species (Friesen et al., 2018). In addition, the fog cover greatly reduces solar radiation 

and increases humidity, lowering evapotranspiration rates, enabling deep infiltration and 

storage of soil water, which is then used by the plants to extend the growing season for a 

further three months after the monsoon (Hildebrandt and Eltahir, 2007; Bruijnzeel et al., 

2011). Collectively, these processes enable forest cover in this arid region, where annual net 

precipitation is much lower than the expected water demand of forest (Hildebrandt et al., 

2007).  

The cloud forest is crucial to ecosystem functions and services in the CSAM. For example, 

groundwater recharge rates have been found to be markedly higher (24%) in highly forested 

areas compared to sparsely forested areas (Friesen et al., 2018). Moreover, the cloud forest 

provides forage resources for pastoralism, and opportunities for tourism and recreation. The 

CSAM are part of the Horn of Africa biodiversity hotspot (Mittermeier et al., 2004), and 

support unique biodiversity assemblages, including the last viable population of critically 

endangered Arabian leopards (Spalton and Al Hikmani, 2014). However, decreasing long-

term rainfall trends suggest the region is vulnerable to climate change (AlSarmi and 

Washington, 2011), and scientists have warned of the potential for irreversible forest-

grassland regime shifts, due to reduced fog interception following removal of woody 

vegetation by browsing livestock (Hildebrandt and Eltahir, 2006, 2008).  

In view of the high conservation and ecosystem service value of the cloud forest, improving 

our understanding of the ecohydrology in the CSAM is of great importance. While the 

density of the fog can be seen to vary in different parts of the mountains, no studies have 

examined how the complex topography affects fog distributions. In fact, our overall 

understanding of topography-fog interactions is limited; based on a small number of studies 

involving in situ measurements (Kidron, 2005; Hesse, 2012; Cavelier and Guillermo, 1989). 

Furthermore, we have a limited understanding of how fog distributions affect vegetation 

distributions at the landscape scale in the CSAM, with much of the previous ecohydrological 
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research having been conducted in a single forest plot. One exception is a recent study by 

Sousa et al. (2019), which provides evidence of a coupling between fog distributions and 

vegetation phenology. They concluded that vegetation phenology differed longitudinally, 

however it appears that their results were capturing the differing phenology of grasslands 

and forests, due to a misclassification of western and central forests as grasslands and 

eastern grasslands as forests.  

Using conventional methods of fog detection (in-situ fog collectors, fog detectors and fog-

droplet spectrometers) to conduct a detailed landscape-scale analysis of the interplay 

between topography, fog and vegetation would require an impractically large number of in-

situ fog measurements (Bruijnzeel et al., 2005). Instead, several remote sensing approaches 

have been developed, although no satellites can detect fog specifically. The most common 

method involves differencing thermal (10.8 μm) and mid-infrared (3.7 μm) spectral bands. 

Fog is discriminated from other surfaces due to its low emissivity in mid-infrared at night 

and its high reflectivity during the day (Bendix, 2002). This method does not differentiate 

between fog and other cloud types, and is usually limited to night-time imagery. Another 

more recent method uses spectral, spatial and microphysical properties of fog from Meteosat 

8 data (Cermak and Bendix, 2008). These methods have been used to describe fog-

vegetation relationships, such as in Oman’s central desert (Borrell et al., 2019) and elsewhere 

(Lehnert et al., 2018; Cereceda et al., 2008; Obregon et al., 2014; Cermak, 2012). However, 

one drawback of these methods is that fog distributions are mapped at a low resolution, of no 

less than 1.1 km (AVHRR imagery). To detect small or spatially heterogenous fog events 

higher resolutions are required, such as those of Landsat imagery (Bruijnzeel et al., 2005; 

Lehnert et al., 2018).  

In this study, we develop a new high-resolution fog detection technique using Landsat data, 

and compile a suite of high-resolution geospatial datasets, to examine the interplay between 

topography, fog and vegetation in the CSAM. We address two research questions. Firstly, 
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how do topographic factors affect the distribution of monsoon fogs? And secondly, how do 

topographic factors and fog distributions affect patterns of vegetation greenness?  

2. Materials and Methods 

2.1. Topography and vegetation datasets  

The geospatial datasets used in this analysis are listed in Table 1 and hosted in the 

PANGAEA data repository (doi.org/10.1594/PANGAEA.902295). The ArcGIS Spatial 

Analyst toolbox and the Geomorphometry and Gradient Metrics toolbox (Evans et al., 2014) 

were used to calculate a range of topographic layers and geomorphology metrics from 

ASTER Global Digital Elevation Model (GDEM) data. In addition, several layers were 

produced to account for topoclimatic phenomenon specific to the CSAM. The first was a 

binary layer to differentiate the north and south escarpments of the continental divide, 

which have contrasting climatic conditions. Without this variable, topographic variables such 

as elevation were torn between the two sides when predicting fog distributions. Surface 

aspect was derived from a low resolution (1 km) DEM to identify the continental divide. The 

second layer, a measure of fog exposure, was produced by reclassifying aspect to have 

highest values on slopes facing offshore in the direction of maximum fog exposure (an aspect 

of 160°) and lowest values on slopes facing inland (an aspect of 340°) (Abdul-Wahab, 2003). 

The third layer, a binary layer of fog exposure (windward/leeward), was calculated from the 

viewsheds of three observer points situated c. 60 km offshore at an elevation of 500 m.  

Table 1. The geospatial datasets used in this analysis. 

Metric Description 

Average monsoon fog density  

(0-1 scale) 

A multiband (R, G, B, NIR) raster layer of average monsoon fog density 

calculated on a per cell basis as the mean of the fog reflectance values of 

119 Landsat 5 TM scenes, 17 Landsat 7 ETM+ scenes and 121 Landsat 8 

OLI TIRS scenes.  

Fog temporal variability 

(0-1 scale) 

A multiband (R, G, B, NIR) raster layer of fog temporal variability 

calculated on a per cell basis as the standard deviation of the fog 

reflectance values of 119 Landsat 5 TM scenes, 17 Landsat 7 ETM+ scenes 

and 121 Landsat 8 OLI TIRS scenes. This layer serves as a measure of 

temporal variability in fog density.  

https://doi.org/10.1594/PANGAEA.902295
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Normalized Difference 

Vegetation Index (NDVI) (Rouse 

et al., 1973) 

 

An NDVI raster layer derived from Sentinel-2 imagery from April 2017. 

NDVI is a strong proxy of vegetation cover fraction, leaf area and biomass 

in arid environments.  

Elevation An elevation raster layer derived from ASTER Global Digital Elevation 

Map V2. The original data has been transformed to a projected coordinate 

system with bilinear resampling.  

Slope (Burrough and Mcdonnell, 

1998) 

A raster layer of slope, in degrees, derived from the elevation layer using 

the average maximum technique.  

Topographic Position Index (TPI) 

(Guisan et al., 1999). Nine layers 

with radii of 100 m, 200 m, 300 

m, 400 m, 500 m, 1000 m, 2000 

m, 3000 m, 5000 m, and 10000 

m.  

TPI raster layers using different radii derived from the elevation layer. TPI 

measures the difference between a central cell elevation and the average 

elevation around it within a predetermined radius (R). It is a measure of 

terrain roughness. TPI is increasingly used to classify slope position and 

landform types.  

Linear Aspect A linear aspect raster layer derived from the elevation layer. Circular aspect 

is transformed to a linear variable.  

Terrain Ruggedness Index (TRI) 

(Riley et al., 1999) 

A TRI raster layer derived from the elevation layer, based on the sum 

change in elevation between a central cell and its eight neighbouring cells. 

TRI is a terrain roughness metric.  

Surface Area Ratio (SAR) 

(Berry, 2002) 

A SAR raster layer derived from the elevation layer. SAR is another 

measure of terrain roughness which compares terrain surface area to the 

planimetric area. Berry's method uses slope to calculate an adjustment 

factor for the cell planimetric area.  

Surface Relief Ratio (SRR) (Pike 

and Wilson, 1971) 

A SRR raster layer derived from the elevation layer which describes terrain 

roughness using a central cell and its eight neighbouring cells. 

Curvature (Moore et al., 1991) 

 

A layer of curvature derived from the elevation layer. It is the second 

derivative value of the input surface on a cell-by-cell basis and describes 

the concavity or convexity of a surface.  

Compound Topographic Index 

(CTI) (Gessler et al., 1995) 

A CTI raster layer derived from the elevation layer. CTI is a steady state 

wetness index and a measure of flow accumulation. Higher values 

represent drainage depressions, while lower values represent hilltops and 

ridges.  

Site Exposure Index (Balice et 

al., 2000) 

A SEI raster layer derived from the elevation layer. SEI rescales aspect 

with higher values on warm south facing slopes and lower values on north 

facing slopes.  

Topographic Radiation Aspect 

Index (TRASP) (Roberts and 

Cooper, 1989) 

A TRASP derived from the elevation layer which assigns lowest values to 

cool, north-facing slopes and highest values to hotter, dryer south-facing 

slopes.  

Escarpment (North/South) A binary raster layer to differentiate the north and south watersheds of the 

continental divide. Produced by calculating aspect on a low resolution (1 

km) DEM to identify the continental divide.  

Modified aspect A raster layer of reclassified aspect with highest values on slopes facing 

offshore in the direction of maximum fog exposure (an aspect of 160°) and 

lowest values on slopes facing inland (an aspect of 340°) (Abdul-Wahab, 

2003).  

Topographic exposure to fog A binary raster layer of topographic exposure to monsoon fog 

(exposed/leeward). Calculated from the viewsheds of three observer points 

situated c. 60 km offshore at an elevation of 500 m. 
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Vegetation indices are combinations of two or more spectral bands which detect vegetation 

properties such as photosynthetic activity. The most commonly used is the normalized 

difference vegetation index (NDVI) (Rouse et al., 1974). In arid environments, NDVI is a 

strong proxy of vegetation cover fraction, leaf area and biomass (Tian et al., 2019). We 

derived NDVI from Sentinel-2 MSI data products. The Sentinel 2 Level 1C top-of-

atmosphere reflectance data products were processed to Level 2A bottom-of-atmosphere 

data products using the Sen2Cor processer in the Sentinel 2 Toolbox in the Sentinel 

Application Platform (SNAP) (Zuhlke et al., 2015). Imagery from April 2017 was chosen 

because in April the distinction between habitat types is most pronounced. Trees and shrubs 

undergo a second generative growth phase (which was particularly pronounced in 2017 due 

to a strong monsoon the previous summer) while herbaceous species have senesced (Miller 

et al., 1988). A visual comparison of NDVI values with satellite imagery shows that high 

NDVI values correspond to cloud forest, lower values correspond to grasslands, and the 

lowest values indicate unvegetated areas.  

2.2. Fog density dataset 

Satellite observations show some consistency in the monsoon fog distributions in the CSAM. 

For example, some areas of the mountains receive frequent dense fogs, while other areas 

receive infrequent fogs. We hypothesized that topographic factors influence the fog 

distribution, which interacts with the land surface and influences vegetation distributions. 

Therefore, we produced a raster layer of average monsoon fog density, calculated on a per 

cell basis as the mean of the fog reflectance values of multiple Landsat scenes. In addition, 

we calculated a layer of standard deviation values, as a measure of fog temporal variability.   

These layers were calculated in Google Earth Engine (see Supplement 1 for JavaScript code). 

First, the Landsat 5, 7 and 8 top-of-atmosphere reflectance imagery collections were filtered 

to imagery from the CSAM acquired during the monsoon (June-September). Then, scenes 

with no or very little fog, or a high coverage of mid-level or high-level clouds, were filtered 

out. This was achieved by filtering out scenes with less than 5% cloud cover (using Google 
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Earth Engine’s pixel-based cloud scoring algorithm) over the fog-affected southern 

escarpments or more than 5% cloud cover to the north of the mountains (Figure 2). This 

technique successfully filtered out cloudy scenes because the monsoon fog is restricted to the 

vegetated southern escarpments, and thus substantial areas of cloud outside this typical 

distribution, is very likely to be mid-level and high-level clouds, rather than fog.  

 

Figure 2. A diagram illustrating the criteria employed for filtering out scenes with little or no 

fog (< 5% over the mountains) or a high coverage of mid-level or high-level clouds (> 5% to 

the north of the mountains) prior to calculating the average fog density. One hundred and 

nineteen of 251 Landsat 5 scenes, 17 of 36 Landsat 7 scenes and 121 of 232 Landsat 8 scenes 

remained after removing fogless and cloudy scenes.  

The scenes were cropped to remove ragged edges or bordering ‘no data’ values, to ensure a 

seamless final composite layer. Then, the fog cover was extracted from each scene using the 

cloud bitmask (4) in the quality assessment band (BQA), and the background cells were set 

to zero to represent fogless areas (a reflectance threshold could also have been used to select 

fog areas). This extraction method, using a cloud bitmask, was effective because the 

monsoon fog in the CSAM is dense and contrasts with the land surface. Thus, it should be 
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noted that this method may not be appropriate for isolating low density or irregular fog 

events, or distinguishing between fog, haze and low stratus.  

Fog reflects solar radiation in the visible and infrared spectra (Wang et al., 1999). In the 

CSAM, higher reflectance values in fog areas can be interpreted as denser and more 

moisture-laden fog because the fogs lower and upper altitudes are limited by the southern 

escarpment and a temperature inversion, respectively (Kürschner et al., 2004; Friesen et al., 

2018). A histogram of the band reflectance values confirmed the green, red, blue and near-

infrared (NIR) bands detected the greatest range of fog reflectance values (Figure 3). These 

bands were isolated in each image and renamed for continuity between sensors. 

 

Figure 3. Histograms of the band reflectance values in fog areas. The NIR band detects the 

greatest range of reflectance values in fog areas, and thus the range of fog densities are well-

represented.  

A total of 257 scenes acquired in the years 1987–2002 and 2013–2019 were included in the 

mean and standard deviation calculations (Supplement 2). The number of scenes and their 

locations (WRS-2 path/row) in each represented monsoon season, are shown in Figure 4, 

along with their fog intensity. Fog intensity was calculated for each scene as the mean of the 
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fog density cell values within an analysis window. Each tile area (WRS-2 path/row) 

contained an analysis window, within which every scene had complete data. 

 

Figure 4. The number of scenes (total 257) and their locations (WRS-2 path/row) in each 

represented monsoon season (1987-2002 and 2013-2019). Fog intensity was calculated for 

each scene as the mean of the fog density cell values within an analysis window. Each tile 

area (WRS-2 path/row) contained an analysis window, within which every scene had 

complete data.  

Finally, the scenes were stacked, and the mean and standard deviation were calculated on a 

per cell basis, to produce layers of average fog density and fog temporal variability, 

respectively. The NIR band was used in this analysis as it detects the greatest range of 

reflectance values in fog areas, and thus the range of fog densities are well-represented 

(Figure 3).  

To confirm that the fog density layer was spatially accurate and interacting with the land 

surface and affecting vegetation patterns, we used data from a 2016 botanical survey of the 

cloud forest in the Jabal Qamar mountain range in Dhofar (Ball, 2019). The original dataset 

comprised 7200 woody plant records from 30 systematically sampled sites between 300 m 
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and 900 m above sea level (Figure 1). To validate the fog layer, an ANOVA test was used to 

compare fog density values at the locations of four xerophytic plant species (Acacia 

gerrardii, Adenium obesum, Aloe praetermissa and Cordia ovalis) with fog density values at 

the locations of four relatively mesophytic plant species (Blepharis dhofarensis, Cordia 

perrottetii, Croton confertus and Ruttya fruticosa).  

2.3. Testing the topography-fog-vegetation relationship 

To produce a testable dataset the geospatial layers were randomly sampled at 50,000 

locations throughout the monsoon area of the CSAM (fog density > 0.1). We excluded the 

city of Salalah on the coastal plain and areas within 50 m of surfaced roads, to avoid 

sampling terrain disturbance and anthropogenic features. The sample was analysed using 

regression tree analysis (RTA) in the R ‘rpart’ package (R Core team, 2019; Therneau and 

Atkinson, 2019b) which implements methodologies of Breiman et al. (1984). Two trees were 

grown. The first tree modelled fog density as a function of topographic variables and 

included 22 explanatory variables (Table 1). The second tree modelled vegetation greenness 

as a function of fog and topographic variables, using the same 22 topographic variables, plus 

fog density and fog temporal variability.  

Regression tree analysis partitions a dataset into smaller subgroups through recursive 

partitioning. The binary splits occur at nodes based on true/false answers about the values of 

predictors, and each split is based on a single variable. The rule generated at each step 

maximizes the class purity within each of the two resulting subgroups (Breiman et al., 1984; 

Miska and Jan, 2004). It is a popular alternative to classical regression techniques with 

several characteristics that make it well-suited to our analysis. Firstly, it is a non-parametric 

technique which befits the heteroscedasticity and non-normality of our response variables. 

Secondly, it does not rely on a priori hypotheses about the relationships between the 

predictors and the response variable. This is important in geomorphological and remote 

sensing analyses where nonlinear responses and predictors may interact in unknown ways 

(Miska and Jan, 2004). Finally, RTA accepts both categorical and continuous predictors and 
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models interaction effects, and represents them in a highly interpretable format (Thuiller et 

al., 2003).  

Deciding on the appropriate length of the tree is a key consideration in RTA. If the tree is too 

short (underfitting) it could have a high predictive error and underexplain the data, but if it 

is too long (overfitting) it will describe random ‘noise’ in the data and become complex and 

uninterpretable (Spruill, Showers and Howe, 2010; Therneau and Atkinson, 2019a). The 

rpart package performs cross-validations to determine an appropriate complexity parameter 

for tree pruning. Between 10 and 20 cross-validations are recommended, so 15 cross-

validations were chosen. Any split that does not decrease the overall lack of fit by a factor of 

the complexity parameter at each step is not attempted (Prasad et al., 2006). By default, the 

rpart package implements a minimum complexity parameter of 0.01, but Therneau and 

Atkinson (2019a) warn of underfitting with large datasets. For our tree which modelled 

vegetation greenness, we reduced the complexity parameter to 0.005, which increased the 

number of terminal nodes from eight to ten. Variable importance was calculated using the 

default method in the rpart package from Breiman et al. (1984), as the sum of the goodness 

of split measures (Gini index) for each variable used as a primary or surrogate split. The 

minimum number of observations required for a split and for a terminal node was specified 

as 20. 

3. Results 

The fog density and fog temporal variability layers are displayed in Figure 5, alongside a 

true-colour satellite image, NDVI, and elevation. Visually, broadscale correlative patterns are 

evident. In Figure 6, fog density is plotted against fog temporal variability, which shows a 

curvilinear relationship, with increasing temporal fog variability until a fog density of 0.4, 

and then decreasing fog variability with increasing fog density. Fog data at the locations of 

the eight moisture-sensitive plant species are also plotted in Figure 6, and an ANOVA test 

confirmed that fog densities are significantly higher in areas occupied by the mesophytic 

species (F (1, 94) = 65.7, p = < 0.001). This indicates that our fog detection method is 
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accurate and that the observed fog distribution is interacting with the land surface and 

affecting vegetation patterns. Figure 7 shows a detailed cross-section of the CSAM with the 

layer of fog density draped over a double-exaggerated, contoured, shaded relief elevation 

surface.  
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Figure 5. Layers of (a) true-colour satellite image, (b) NDVI, (c) elevation, (d) average fog 

density, and (e) fog temporal variability, for the central South Arabian mountains. 

Broadscale correlative patterns are evident. Diffference in NDVI between cloud forest and 

grassland can be seen in the inset maps.  

 

Figure 6. A scatterplot of fog density and fog temporal variability. The curvilinear 

relationship shows increasing and high temporal fog variability in areas with low fog 

densities (< 0.4) but lower and decreasing fog variability in areas of high fog densities. Fog 

density is significantly higher (p < 0.001) and temporal variability lower for mesophytes 

compared to xerophytes, providing evidence that the fog density layer is accurate.  
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Figure 7. A three-dimensional cross section of the central South Arabian mountains between 

Dhalkut and Rakhyut in Dhofar, with the layer of fog density draped over a double-

exaggerated, contoured, shaded relief elevation surface. Fog density has been classified into 

six classes (Jenks optimization). Steep windward slopes obstruct the inland movement of fog 

affecting its distribution.  

In the following section we present the RTA trees (Figure 8 and 9) and diagnostic plots 

(Figure 10). The complexity parameter plots show the reduction in the cross validated error 

with decreasing complexity parameter values and increasing tree size (Figure 10). They show 

that we would see diminishing returns if we continued to grow the trees. Additional plots 

show the importance of each variable (Figure 10). The higher the variable importance (0-1 

range), the more the variable contributes to improving the model.  
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The tree to describe fog distributions had 10 splits, 11 terminal nodes and a cross-validated 

error of 0.582 (Figure 8, Supplement 3). The most important variables (importance > 0.05) 

are shown in Figure 10.  

In RTA, partitions near the starting node are the most important and result in large reductions 

in model error. At the first split, the tree identified an important elevation threshold at 858 

m. This represents the boundary of the core fog zone, where the southern escarpments meet 

the plateau, where an atmospheric temperature inversion limits the northward movement of 

fog (Kürschner et al., 2004; Friesen et al., 2018). The lowest fog densities occurred at 

elevations above 1027 m (Node 4) and on the northern desert-facing escarpments (Node 14). 

On the southern escarpments, low fog densities occurred in leeward areas above 858 m 

(Node 10) and on hilltops below 300 m (Node 12). The topographic position index (TPI) 

describes whether land is within wadis and depressions or on crests and hilltops. Higher fog 

densities occurred in wadis between 300 m and 858 m (Node 30), on leeward-facing wadi 

slopes below 300 m (Node 26), and on windward-facing slopes between 858 m and 1027 m 

(Node 11). Higher fog densities occurred on hilltops in leeward areas between 300 m and 

858 m (Node 124), where fog densities were markedly higher on steep slopes (Node 125), as 

measured by Surface Area Ratio. High fog densities occurred on windward wadi slopes below 

300 m (Node 27), with the highest on windward hilltops between 300 m and 858 m (Node 

63). In summary, fog densities are low above 858 m unless in windward areas, whilst below 

858 m, higher fog densities occur in wadis at lower elevations and on hilltops at higher 

elevations. At all elevations, fog densities are higher in windward locations. 



19 
 

 

Figure 8. The tree describing fog distributions had 10 splits, 11 terminal nodes and a cross-

validated error of 0.582. The ‘jumps’ in the node numbers result from the pruning of those 

branches which did not decrease the overall lack of fit by a factor of complexity parameter. 

The terminal node numbers were reassigned to the data points and mapped according to the 

tree colour scheme.  

The tree describing vegetation distributions had 9 splits, 10 terminal nodes and a cross-

validated error of 0.349 (Figure 9, Supplement 4). The most important variables 

(importance > 0.05) are shown in Figure 10.  

The first partition at a fog density threshold of 0.37 reduced the cross-validated error from 1 

to 0.6, indicating the importance of this first split which represents the boundary of the core 

fog zone. Low NDVI values were found to be in areas with fog densities below 0.37, with the 
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lowest at elevations below 293 meters. Here, NDVI values were lower on hilltops (Node 8) 

than in wadis (Node 9). Slightly higher NDVI values occurred at elevations above 293 m in 

areas with fog densities below 0.29 (Node 10), in areas with smooth terrain below 164 m with 

fog densities above 0.37 (Node 12), and in areas above 293 m with fog densities between 

0.29 and 0.37 (Node 11). Higher NDVI values were on hilltops with smooth terrain (Terrain 

Ruggedness Index) above 164 m, in areas with fog densities greater than 0.37 (Node 26), and 

in areas with rougher terrain with fog densities between 0.37 and 0.44 (Node 14). Higher 

NDVI values occurred in areas with rugged terrain and fog densities greater than 0.44 (Node 

30) and in wadis with smooth terrain above 164 m and fog densities greater than 0.37 (Node 

27). The highest NDVI values occurred in areas with very rugged terrain and fog densities 

greater than 0.44 (Node 31). In summary, the lowest NDVI values occurred in areas with fog 

densities below 0.37 and at low elevations (< 164 m), whilst higher NDVI values were in 

foggier areas, especially within wadis and areas with rugged terrain.  
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Figure 9. The tree describing vegetation distributions had 9 splits, 10 terminal nodes and a 

cross-validated error of 0.349. The ‘jumps’ in the node numbers result from the pruning of 

those branches which did not decrease the overall lack of fit by a factor of complexity 

parameter. The terminal node numbers were reassigned to the data points and mapped 

according to the tree colour scheme.  

To further test the importance of fog, relative to topographic variables, for describing 

vegetation distributions (in addition to the variable importance results in Figure 10), we ran 

the analysis of vegetation greenness distributions without fog data. Less variance was 

explained - elevation was the most important variable (0.44), but a cross-validated error of 

only 0.56 was reached by the ninth split, compared to 0.35 with fog data included.  

 

Figure 10. Complexity parameter plots and variable importance for (a) the tree describing 

fog distributions and (b) the tree describing vegetation distributions. Complexity parameter 

plots show the reduction in the cross validated error with decreasing complexity parameter 

and increasing tree size. We would see diminishing returns if we continued to grow the trees. 

Variable importance is calculated as the sum of the goodness of split measures (Gini index) 

and considers both primary and surrogate splits. 
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4. Discussion 

The first tree in our analysis described 42% of the variance in fog distributions, showing that 

topographic factors play a substantial role in shaping fog distributions. Altitudinal variation 

in fog distributions was identified, with important thresholds at 858 m and 1027 m, which 

correspond to the boundary of the core fog zone and fog spillover to the northern 

escarpments, respectively (Figure 8). Topographic position and exposure were important 

(Figure 10). Our results show that at low elevations fog density is higher in wadis than on 

hilltops, whilst at higher elevations fog density is lower in wadis (Figure 8). One explanation 

for this pattern is that at lower elevations, wadis are larger and deeper and oriented with 

their mouths in a windward direction, and therefore can collect fog. However, at higher 

elevations the wadis are shallower and oriented in various directions, and therefore the fog 

passes over them, assisted by the higher wind speeds at altitude.  

Regarding exposure, we see high fog densities where windward slopes and landforms, such 

as cliffs, obstruct the inland movement of fog, whilst lower fog densities occur in leeward 

locations (Figure 7). Lawton (1978) described a similar trend from Dhofar but at a much 

smaller scale. Moisture-deprived shadows of bare ground on the lee-side of Euphorbia 

balsamifera shrubs were noted. Our results, which show the greatest fog densities on steep 

windward slopes, conform to findings from other studies which used in-situ field 

measurements. For example, windward aspects received higher fog precipitation than 

leeward aspects in the Negev desert (Kidron, 2005) and fog densities were found to be lower 

in leeward locations in coastal Peru (Hesse, 2012). Furthermore, over twice as much fog was 

intercepted by forests on exposed windward slopes than on leeward slopes in Columbia and 

Venezuela (Cavelier and Guillermo, 1989).  

The second tree in our analysis described considerable variance in vegetation greenness 

(65%) and fog density was the most important predictor (Figure 9). Fog is known to 

influence vegetation patterns (Scholte and De Geest, 2010; Martorell and Ezcurra, 2002; 

Cavelier and Guillermo, 1989), especially in arid environments (Hildebrandt and Eltahir, 
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2008; Scholte and De Geest, 2010; Martorell and Ezcurra, 2002). Our results corroborate 

existing evidence of the importance of fog for vegetation communities in the CSAM 

(Hildebrandt et al., 2007; Hildebrandt and Eltahir, 2007).  

Our results also show that vegetation greenness increases with fog density. In areas with the 

highest and most consistent fog densities we see the highest NDVI values (Figure 9). In these 

locations, fog interception by the cloud forest increases soil moisture availability, therefore 

sustaining its own ecological niche (Hildebrandt et al., 2007; Hildebrandt and Eltahir, 

2006). Interestingly, our results show that these areas also have high terrain roughness 

(Figure 9), which presumably gives rise to a complex forest canopy structure, which is known 

to intercept more fog moisture than a continuous, smooth canopy (Hildebrandt and Eltahir, 

2008). Therefore, these areas, such as at the base of cliffs or tops of tributaries, represent 

important hotspots of fog interception.  

Several of our findings provide evidence that regional vegetation patterns more closely follow 

a fog, rather than an altitudinal gradient, as conventionally supposed (Patzelt, 2015; Mosti et 

al., 2012; Raffaelli and Tardelli, 2006). Firstly, our results show that fog density and 

vegetation greenness vary at comparable altitudes. Secondly, the variable importance data 

shows that topographic factors such as exposure and topographic position are collectively as 

important as elevation in describing fog distributions (Figure 10). Finally, fog density was 

much more important than elevation in describing vegetation greenness (Figure 10). Indeed, 

much less variance was explained when we ran our analysis of vegetation greenness 

distributions without fog data. An altitudinal gradient in fog moisture may also be 

suppressed in the CSAM due to the counteracting effects of elevation and distance from the 

coast. Generally, coastal advection fog interception increases with altitude within the fogs 

elevation range, due to concurrent increases in fog frequency (immersion time) and wind 

speed (Bruijnzeel et al., 2005). However, fog interception tends to decrease with distance 

from the coast (Cereceda et al., 2002).  
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The layer of fog density describes patterns of vegetation greenness more accurately than 

topographic factors alone, perhaps as it incorporates unmeasured topoclimatic processes. 

Therefore, the layer of fog density represents an important variable for ecological modelling 

of biodiversity in the region, especially for plants which respond strongly to moisture 

availability. In recent years, the number of botanical records from the CSAM has increased 

substantially, thanks to the efforts of the Oman Botanic Garden (Patzelt et al., 2008, 2009). 

Besides plants, specialist animal species (many of which have received very little research 

attention), are also likely to respond to fog density. For example, humidity has been cited as 

an important factor in the ecological separation of species of Hemidactylus geckos in Dhofar 

(Carranza and Arnold, 2012), whilst different bird communities have been described from 

habitats with different water availability in western Dhofar (Ball et al., 2015). It should also 

be noted that by advancing our ability to model abiotic conditions, we improve our ability to 

quantify the relative effects of human disturbances on vegetation patterns in the CSAM, 

which will be one focus of our future research.   

This research contributes a novel, high-resolution, fog detection technique which is 

particularly suited to mapping dense fog events with complex spatial distributions. However, 

there are two main limitations to our fog detection technique. Firstly, it may not be 

appropriate for detecting low density or irregular fog events, or distinguishing between fog, 

haze and low stratus. The fog needs to contrast with the land surface to be extracted using a 

cloud mask or reflectance threshold, and to minimise the influence of land surface 

reflectance values on fog reflectance values. Secondly, the measures of fog density are 

unitless. Thus, comparisons with other studies is difficult, unless liquid water content values 

from multiple field measurements are interpolated in the fog density layer. 

There are also two main limitations to our analysis. Firstly, we cannot determine if the fog 

layer is touching the local surface or not. Thus, ground fog and raised fog are lumped 

together. This is common to other remote sensing fog detection methods. However, our 

results show beyond reasonable doubt that our observed fog distributions are affecting 
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vegetation processes. Secondly, other unmeasured thermodynamic processes, such as cold 

air pooling (Hang et al., 2016), turbulence (Gultepe et al., 2007), wind (Walmsley et al., 

1996) or changes in the frequency, depth, and strength of atmospheric inversions (Abdul-

Wahab, 2003), will influence fog distributions. These may account for some of the cross-

validated error (0.582) in the tree describing fog distributions, in addition to variability 

associated with the landscape scale of the analysis.  

Conclusion 

In the central South Arabian mountains of Yemen and Oman, fog interception by the 

vegetation supports ecosystem functions and services. Yet we have a limited understanding 

of the factors affecting fog distributions and their cumulative effects on vegetation. In this 

paper, we developed a novel method of high-resolution fog detection using Landsat data and 

assembled a suite of geospatial datasets. Regression tree analysis was then used to examine 

the topographic factors influencing fog distributions and the topoclimatic factors influencing 

satellite-derived vegetation greenness. We found that topography affects fog distributions. 

Specifically, steep windward slopes obstruct the inland movement of fog, resulting in 

heterogenous fog densities and hotspots of fog interception. Moreover, we found a positive 

spatial trend between fog density and vegetation greenness. In addition, we found that the 

layer of fog density describes vegetation patterns more precisely than topographic factors 

alone, and we propose that the average fog distribution, rather than an elevation gradient, 

may be more appropriate to describe regional vegetation patterns. The layer of fog density 

will enable an improved understanding of how local biodiversity, much of which is endemic, 

range-restricted, or in decline, responds to local variability in topoclimatic conditions. 
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