23 research outputs found

    Growth hormone and somatolactin function during sexual maturation of female Atlantic salmon

    Get PDF
    Background and aims: The growth hormone-insulin-like growth factor I (GH-IGF-I) system is known to act during sexual maturation of female salmonids, but the specific roles are not known. Somatolactin (SL) is a pituitary hormone closely related to GH and is only found in fish. In some species, including salmonids, there are two forms, SLa and SLß. The SL receptor (SLR) has recently been cloned and phylogenetic analysis shows that it is similar to previously cloned GH receptors (GHRs) of non-salmonids. The ligand-specificity of the GHR/SLR is unclear. Little is known about the role of the SLs in sexual maturation of fish. The aim of this thesis has been to increase our knowledge about the regulatory role(s) of both the GH-IGF-I system and of SLs during sexual maturation in female Atlantic salmon. Methods: The cDNA sequences of Atlantic salmon GHRs (two isoforms), SLR, as well as SLa and SLß were obtained with the goals of carrying out a phylogenetic analysis, and of developing molecular tools for analysis of mRNA levels using real time quantitative PCR (RTqPCR). The roles of GH, IGF-I and SL were examined in a 17-month long study on one sea winter Atlantic salmon females. mRNA expression levels of ovarian components of the GH-IGF-I system and SLR and pituitary GH, SLa and SLß were studied by RTqPCR. Levels of GH and IGF-I in plasma, and of GH in the pituitary were measured by radio-immunoassay. Results and Conclusions: The phylogenetic analysis (Paper I and II) of the cloned sequences reveals the placement of Atlantic salmon GHR in the GHR type II clade and SLR in the controversial GHR type I clade (putative SLRs). Concurrent analyses of pituitary GH mRNA levels, GH protein and plasma GH in the same individual fish demonstrates the complex dynamics of the GH system, which is inhibited by a continuous light. Papers III and IV confirm that there is an active GH-IGF-I-gonad axis in the female Atlantic salmon that appears to be functional at the start of exogenous vitellogenesis, final oocyte growth, spawning and possibly during postovulatory events. Evidence has been found for a photoperiod-driven GH-system activation which is initiated in January with stimulation of GH secretion from pituitary somatotropes. The role of this activation of the GH system in late winter/early spring appears to be the reversal of a prior plasma IGF-I and ovarian IGF-I mRNA downregulation driven by an unknown factor(s). This downregulation in IGF-I is thought to inhibit somatic cell proliferation. The activation of the GH-IGF-I-gonadal system also appears to limit energy allocation to gonadal growth. This series of events involving the GH-IGF-I system appears to take place during the so-called spring window of opportunity and it is the first time this has been described. The GH-IGF-I system also appears to have an important role during final oocyte growth, spawning and post-spawning events. SLa and SLß are both actively regulated during sexual maturation and could have several roles, such as signaling the status of visceral fat reserves during the spring window of opportunity, signaling lipid metabolic status before the onset of anorexia, involvement in Ca mobilization during vitellogenesis and/or control of lipid metabolism in lieu of GH during the final stages of oocyte growth

    Aquatic exposures of chemical mixtures in urban environments: approaches to impact assessment

    Get PDF
    Urban regions of the world are expanding rapidly, placing additional stress on water resources. Urban water bodies serve many purposes from washing and sources of drinking water to transport and conduits for storm drainage and effluent discharge. These water bodies receive chemical emissions arising from either single or multiple point sources, diffuse sources which can be continuous, intermittent or seasonal. Thus, aquatic organisms in these water bodies are exposed to temporally and compositionally variable mixtures. We have delineated source-specific signatures of these mixtures for diffuse urban runoff and urban point source exposure scenarios to support risk assessment and management of these mixtures. The first step in a tiered approach to assessing chemical exposure has been developed based on the Event Mean Concentration concept with chemical concentrations in runoff defined by volumes of water leaving each surface and the chemical exposure mixture profiles for different urban scenarios. Although generalizations can be made about the chemical composition of urban sources and event mean exposure predictions for initial prioritization, such modelling needs to be complemented with biological monitoring data. It is highly unlikely that the current paradigm of routine regulatory chemical monitoring alone will provide a realistic appraisal of urban aquatic chemical mixture exposures. Future consideration is also needed on the role of non-chemical stressors in such highly modified urban water bodies

    From bioavailability science to regulation of organic chemicals

    Get PDF
    The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently started to consider bioavailability within retrospective risk assessment frameworks for organic chemicals; by doing so, realistic decision-making with regard to polluted environments can be achieved, rather than relying on the traditional approach of using total-extractable concentrations. However, implementation remains difficult because scientific developments on bioavailability are not always translated into ready-to-use approaches for regulators. Similarly, bioavailability remains largely unexplored within prospective regulatory frameworks that address the approval and regulation of organic chemicals. This article discusses bioavailability concepts and methods, as well as possible pathways for the implementation of bioavailability into risk assessment and regulation; in addition, this article offers a simple, pragmatic and justifiable approach for use within retrospective and prospective risk assessment

    Thyroid hormone receptor expression during metamorphosis of Atlantic halibut (Hippoglossus hippoglossus)

    Get PDF
    Flatfish such as the Atlantic halibut (Hippoglossus hippoglossus) undergo a dramatic metamorphosis that transforms the pelagic, symmetric larva into a benthic, cranially asymmetric juvenile. In common with amphibian metamorphosis, flatfish metamorphosis is under endocrine control with thyroid hormones being particularly important. In this report we confirm that tri-iodothyronine (T3) levels peak at metamorphic climax during halibut metamorphosis. Moreover we have isolated cDNA clones of TR and TR genes and confirmed the presence in halibut of two TR isoforms (representing the products of distinct genes) and two TR isoforms (generated from a single gene by alternative splicing). Real time PCR was used to assess expression of these genes during metamorphosis. TR shows the most dramatic expression profile, with a peak occurring during metamorphic climax.This work has been carried out within the project “Arrested development: The Molecular and Endocrine Basis of Flatfish Metamorphosis” (Q5RS-2002-01192) with financial support from the Commission of the European Communities. However, it does not necessarily reflect the Commission’s views and in no way anticipates its future policy in this area. We thank Heiddis Smáradóttir (Fiskeldi Eyjafjarðar, IS-600 Akureyri, Iceland) for collecting and providing the Atlantic halibut samples, and Karin Pittman and Øystein Sæle (both from the Department of Biology, University of Bergen, Norway) for analysing samples to determine developmental stage. We are also grateful to Marco Campinho for preparing the RNA used in the study

    Characterisation and expression during sex differentiation of Sox19 from the sea bass Dicentrarchus labrax

    No full text
    8 pages, 4 figures, 1 tableThe Sox family of transcription factors are involved in a variety of developmental processes including sex determination and gonadal differentiation. Sox19 is a particularly interesting member of this family that has been found only in fish, though mammals have a very diverged orthologue that is designated Sox15 and assigned to a different Sox family subgroup. Here we describe the cloning and characterisation of sox19 from the European sea bass (Dicentrarchus labrax), an important aquaculture species in which sex ratios skewed in favour of males are frequently encountered. The sea bass sox19 gene contains a single intron, encodes a protein of 309 amino acids, has multiple transcription start sites and may produce a truncated splice variant. Sox19 mRNA is present in many adult tissues, with the highest expression in the brain and gonads. Interestingly, the gene is strongly upregulated in the differentiation of the ovary but not the testis, suggesting a role in ovarian differentiationThis work was supported by Spanish government fellowship AGL2002-02636 to LN-M. and by the Commission of the European Union, Quality of Life and Management of Living Resources specific RTD program (Project Q5RS-2000-31365, “Probass”), to G.S. and F.P.Peer Reviewe

    Different sox17 transcripts during sex differentiation in sea bass, Dicentrarchus labrax

    No full text
    12 pages, 8 figures, 2 tables.-- PMID: 19071190 [PubMed].-- Available online Nov 21, 2008.-- Supporting information (Suppl. figures S1-S3) available at: https://doi.org/10.1016/j.mce.2008.11.013Sox genes participate in several developmental processes, including sex determination and differentiation. In this study, the genomic structure of sox17 was characterized in the sea bass (sb). Two transcripts, one producing a normal protein (sb Sox17) and another producing a truncated protein (sb t-Sox17) were detected. A third, novel transcript, originated by intron retention (sb i-sox17) was also observed. Sb sox17 was widely distributed, whereas sb i-sox17 was predominantly found in skin and brain. In gonads, sb sox17 expression first increased at 150 days of age, coinciding with the onset of sex differentiation. At 250 days and onwards, sb sox17 expression was significantly higher in females, and mRNA levels correlated with those of gonadal aromatase. Thus, this study provides the first evidence for the presence of alternative splicing by intron retention in a Sox17 gene, and for sex-related differences in expression, implicating sox17 in ovarian development and function in fish.L.N. was supported by the Spanish Ministry of Education and Science (MEC) predoctoral fellowship BES-2003-0006. Research carried out with the financial support of the Commission of the European Union, Quality of Life and Management of Living Resources specific RTD programme (Project Q5RS-2000-31365, "Probass"), to G.S and F.P, and of the MEC project "Sexratio" (AGL2002-02636) to F.P.Peer reviewe

    Molecular characterization and seasonal changes in gonadal expression of a thyrotropin receptor in the European sea bass

    No full text
    The thyroid stimulating hormone (TSH) is a glycoprotein synthesized and secreted from thyrotrophs of the anterior pituitary gland. It acts by binding to and activating its specific receptor, the TSHR, to induce the synthesis and secretion of thyroid hormones. Recent studies conducted in diverse fish species suggest a direct role of TSH on gonadal physiology. In this work, we describe the cloning of a cDNA encoding a TSHR which was isolated from the gonads of the European sea bass (Dicentrarchus labrax). The mature protein displays typical features of the members of the glycoprotein hormone receptor family and shows the highest amino acid sequence identity with the TSHRs of other fish species. An insertion of approximately 50 amino acids, specific for the TSHR subfamily is also present in the carboxyl end of the extracellular domain of the sbsTSHR. By RT-PCR analysis, we demonstrate the extrathyroidal expression of sbsTSHR in numerous tissues of the sea bass. Also, two transcripts that differ in the length of their 3′ untranslated regions were found. They reflect the use of alternative polyadenylation cleavage sites. Seasonal changes in sbsTSHR mRNA levels in female and male sea bass during the first ovarian and testicular recrudescence suggest that in females the TSHR could participate in active vitellogenesis and in the regulation of gamete maturation and ovulation, whereas in males, the TSHR would be involved in the regulation of processes that occur during the early stages of the gonadal development and also of gamete maturation and spermiation. The results of this work indicate that a sbsTSHR has been cloned from the testis of the European sea bass and they provide the basis for future studies concerning the function of TSHR in this species
    corecore