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Corresponding author: Glen Sweeney

Abstract

Flatfish such as the Atlantic halibut (Hippoglossus hippoglossus) undergo a dramatic 

metamorphosis that transforms the pelagic, symmetric larva into a benthic, cranially 

asymmetric juvenile.  In common with amphibian metamorphosis, flatfish 

metamorphosis is under endocrine control with thyroid hormones being particularly 

important.  In this report we confirm that tri-iodothyronine (T3) levels peak at 

metamorphic climax during halibut metamorphosis.  Moreover we have isolated cDNA

clones of TR and TR genes and confirmed the presence in halibut of two TR

isoforms (representing the products of distinct genes) and two TR isoforms (generated 

from a single gene by alternative splicing).  Real time PCR was used to assess expression 

of these genes during metamorphosis.  TR shows the most dramatic expression profile, 

with a peak occurring during metamorphic climax.

* Manuscript
pe

er
-0

05
31

95
6,

 v
er

si
on

 1
 - 

4 
N

ov
 2

01
0



Page 2 of 31

Acc
ep

te
d 

M
an

us
cr

ip
t

2

1.  Introduction

The link between thyroid hormones (TH) and the onset and progression of amphibian 

metamorphosis (reviewed by Brown and Cai, 2007; Tata, 2006; Sachs et al., 2000) has 

been known for almost a century (Gudernatsch, 1912).  More recent research, notably 

some incisive and elegant transgenic animal studies, has emphasised the importance of 

thyroid hormone receptors (Buchholz et al., 2006; Buchholz et al., 2004; Schreiber et al., 

2001) and iodothyronine deiodinases in the process (Brown, 2005; Cai and Brown, 

2004).  However, amphibia are not the only vertebrates that undergo metamorphosis.  

The development of fish involves a metamorphosis from larval to juvenile form that is 

manifest most dramatically in flatfish (pleuronectiformes) such as sole, halibut and 

flounder.  In these species, the pelagic larva undergoes extensive remodelling which leads 

to a loss of external bilateral symmetry and generates a benthic juvenile with both eyes 

on the same, pigmented, side of the body.  These morphological changes are scarcely less 

profound than those of amphibian metamorphosis but are clearly distinct from them.  On 

the other hand, some of the biochemical and physiological changes that accompany 

metamorphosis, such as switching of globin (Wakahara and Yamaguchi, 2001; Miwa and 

Inui, 1991) and keratin (Campinho et al., 2007a) types and the production of new 

isoforms of muscle proteins (Yamano et al., 1991a; Campinho et al., 2007b) are similar in 

flatfish and amphibia.  Still more significantly, there is strong evidence that thyroid 

hormones regulate metamorphosis in flatfish in much the same manner as in amphibia.  

Hence, metamorphosis in Japanese flounder (Paralichthys olivaceus) and Atlantic halibut 

(Hippoglossus hippoglossus) is induced precociously by TH treatment and Japanese 
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flounder metamorphosis is delayed or abolished following exposure to agents that inhibit 

TH synthesis (DeJesus et al., 1993; Solbakken et al., 1999).

THs exert their genomic effects by binding to thyroid hormone receptors (TRs). THs also 

have non-genomic effects (Davis and Davis, 1986), some of which are also mediated via 

the TRs mentioned above (Hiroi et al., 2006).  However the genomic actions alone of 

thyroid hormones may be sufficient for metamorphosis in amphibia (Buchholz et al., 

2004).  TRs are members of the nuclear receptor superfamily, and act as hormone-

regulated transcription factors (reviewed in Zhang and Lazar, 2000; Oetting and Yen, 

2007).  They usually activate the transcription of target genes when complexed with 

hormone but act as repressors in the absence of ligand, although some genes are 

repressed rather than induced by THs.  There are two principal isoforms of TRs in 

vertebrates, designated TR and TR which are the products of distinct genes. The 

mammalian TR and TR genes produce a variety of additional receptor isoforms via

alternative splicing and the use of alternative transcription start sites, (Lazar, 1993; 

Flamant and Samurat, 2003).  The functions of TR and TR have been extensively 

investigated in transgenic mice and it is clear that, in vivo, they have both common and 

isoform-specific roles (reviewed by Cheng, 2005; Flamant and Samurat, 2003).  For 

example, TR isoforms are more important than those of TR in the inner ear (Forrest et 

al., 1996a), liver, and in TH homeostasis (Forrest et al., 1996b), whereas TR isoforms 

play a more significant role in the heart (Mai et al., 2004) and GI tract and also in 

temperature regulation.  These differences in function in vivo between TR and TR may 

arise as a result of slight biochemical differences between the isoforms (for example, see 
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Guissouma et al., 2002). However, microarray analysis of TH-induced gene expression in 

liver from TR and TR deficient mice indicates that the two isoforms regulate almost

the same set of genes (Yen et al., 2003).  Hence, some or all of the functional differences 

between the receptor types may simply be a reflection of differences in their expression 

profiles.

The teleosts also possess TR and TR but, in contrast to mammals, Japanese flounder, 

conger eel (Conger myriaster) and Atlantic salmon (Salmo salar) have two distinct TR

genes (Yamano et al., 1994; Marchand et al., 2001; Jones et al., 2002; Kawakami et al., 

2003a).  Conger eel also has two TR genes, and whilst only a single TR gene has been 

found in other teleosts examined to date, further TR isoforms have been described that 

result from alternative splicing (Yamano and Inui, 1995; Marchand et al., 2001; 

Kawakami et al., 2003b).  We have previously described (Llewellyn et al., 1999) a full 

length TR (henceforth designated as TRA) from a commercially important flatfish 

species, the Atlantic halibut (Hippoglossus hippoglossus).  Here we describe partial 

clones of a second TR gene (designated TRB) and the TR gene from this key 

species.  Real time PCR was subsequently used to assess the expression of all three TR 

genes during metamorphosis and has been related to changes in whole body TH 

concentration.

Materials and Methods.

2.1 Sampling
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Halibut larvae were cultured using standard commercial procedures. Broodstock fish 

were stripped for eggs and milt, and eggs were fertilised in vitro and then placed in open 

system egg incubators at 5.0-5.5 °C for 14 days and then transferred to open system silos. 

For the next 45-50 days the larvae were kept in the dark at a temperature of 5-6°C, after 

which they were transferred to the first feeding tanks at 11°C and fed live feed (Artemia) 

for approximately 60 days. After metamorphosis the bottom dwelling juveniles were 

transferred to weaning tanks and gradually weaned for 10 days on dry feeds.  Samples 

were taken from a standard commercial production cycle (Fiskeldi Eyjafjarðar Ltd, 

Iceland) at regular intervals and larvae were staged according to the criteria of Sæle et al 

(2004).  Larvae were stored at -20°C in RNAlater prior to RNA extraction using Tri-

reagent.

2.2.   TH extraction and Radioimmunoassay

The T4 and T3 content of halibut larvae was assessed by specific radioimmunoassay 

(RIA). Individual larvae of stages 5 (n = 10), 6 (n = 10), 7 (n = 8), 8 (n = 7), 9 (n = 6) and 

10 (n = 6) were extracted in methanol, re-extracted in 50l methanol, 200l chloroform 

and 100l barbital buffer, and centrifuged (3,000 rpm for 30 min at 4oC). Then, the upper 

phase was removed, lyophilised, reconstituted in assay buffer, heat treated (65oC, 2h) and 

assayed.  Assays for both T3 and T4 were highly specific and reproducible and were 

performed under equilibrium conditions using anti-T3 and anti-T4 sera (Sigma-Aldrich) as 

previously described (Einarsdottir et al., 2006). Statistically significant differences in the 

concentration of T4 or T3 detected for different stages were compared by ANOVA on log 
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transformed data, followed by All Pairwise Multiple Comparison Procedures (Holm-

Sidak method). Results were considered to be significantly different at p<0.05.

2.3. Cloning of TRs

PCR using degenerate primers was used in order to isolate partial clones of halibut TRs.  

A multispecies alignment was performed using TR sequences from a variety of vertebrate 

species and degenerate PCR primers were designed that corresponded to particularly well 

conserved motifs.  One primer pair (forward primer: 

AATGYCGCTTCAARAARTGYAT, reverse primer: GTAAACTGRCTRAAGGCYTC) 

was used in RT-PCR reactions in which the substrate was RNA isolated from 

metamorphosing halibut larvae.  The PCR products generated were gel purified, 

subcloned into pGEM-T (Promega, UK) and sequenced.

2.4 Sequence analysis

Complete or partial nucleotide sequences of TRs from Fugu rubripes were obtained by 

BlastN searching of the Fugu genome (http://fugu.biology.qmul.ac.uk) with the halibut 

TRA, TRB and TR sequences.  The intron-exon structure of the Fugu TR gene was 

deduced using Spidey (http://www.ncbi.nlm.nih.gov/spidey/) to identify sequences within 

the individual Fugu scaffold M001021 that showed strong similarity with known teleost 

TR mRNAs, followed by manual comparison of the putative splice sites in the Fugu

sequence with the consensus sequences for vertebrate 5′ and 3′ splice junctions.  

2.5 Real-time RT-PCR analysis of gene expression
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RNA was prepared from five replicate individuals from stages 5 (larvae prior to onset on 

metamorphosis) through to stage 10 (fully metamorphosed juveniles) using Tri-reagent 

(Sigma-Aldrich) and subsequently treated with DNAse (Ambion) according to the 

manufacturer’s instructions.  cDNA was prepared from 0.5g aliquots of each RNA 

using random hexamer primers and superscript II reverse transcriptase (Invitrogen).

Expression of the genes encoding TR1, TR2 and TR was quantified using real-time 

RT-PCR using fluorogenic 5′ nuclease assays performed on an ABI PRISM 7700 

Sequence Detection System (Perkin-Elmer Biosystems, UK).  The sequences of the

primers and TaqMan probes used in each assay were as follows:  TRA, primers 

TTGTTGGACATTGGCTCCATT and CCGCCTCATTGTCCTGTGAT, probe 

TGCCTCAGTACCGTCCAGCGG; TRB, primers TGCGTCGCTCCCTGTTCT and 

TTGGTGCTGGACGACTCAAA, probe TCGATCAGACGCCGCTTCGCT; TR, 

primers TGGTGACTGACGCCCATATG and CAGGAATTTCCGCTTCTGCTT, probe 

CCACGAATGCCCAGGGCAACC. RT-PCR assays, using 5% of the cDNA generated 

in the reactions described above, were normalised with respect to expression of 18s 

rRNA, for which the primers were GCATGCCGGAGTCTCGTT and 

TGCATGGCCGTTCTTAGTTG, and the probe sequence was 

CCACGAATGCCCAGGGCAACC.  Isoform specificity of the probes and primers was 

confirmed by experiments in which each primer/probe combination was tested for its 

ability to amplify DNA from the plasmid clones of TRA, TRB and TR. Each 

individual sample was analysed in triplicate.  One way analysis of variance (ANOVA) 

was used to assess differences between means, after testing for homogeneity of group 
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variances and normality of residuals. Tukey post hoc tests subsequently identified which

stages were significantly different (p<0.05) from the others for each of the genes

analysed.

2.6 PCR-analysis of TR-alternative splicing products

To check for the presence of splice variants involving the hinge region of halibut TR, 

two primers were designed (AGCTGCAGAAGACGGTGTG and 

CAGGTGTATTTGCCATGGAC) that spanned the potential alternatively spliced exons.  

These were used in PCR reactions in which the substrate was cDNA from a variety of 

adult tissues and whole larvae prepared as described above.  PCR reactions were 

performed for 40 cycles.  

3. Results

3.1 Cloning of thyroid hormone receptors

We have previously described a full length halibut cDNA clone representing a thyroid 

receptor  gene (Llewellyn et al., 1999).  However, three different thyroid hormone 

receptor genes, TRA, TRB and TR have previously been identified in Japanese 

flounder (Yamano et al., 1994; Yamano and Inui, 1995), conger eel (Kawakami et al., 

2003a) and Atlantic salmon (Marchand et al., 2001; Jones et al., 2002).  Moreover, our 

analyses of the publicly available sequence from the Fugu genome indicate the presence 

of two distinct TR  genes and a single TR gene in this species also (data not shown).  
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The Atlantic halibut TR gene that we had previously isolated shared highest similarity 

with Japanese flounder TRA.  

RT-PCR with degenerate primers was used to obtain partial clones of other halibut TRs.  

The degenerate primers utilised flank the sequences that encode the hinge (D) region and 

part of the ligand binding (E) domain of TR.  When used with cDNA prepared from 

metamorphosing halibut, the primers amplified fragments of 358bp and 331bp.  Both 

fragments were subcloned and sequenced, and used in blast searches and phylogenetic 

analyses.  The 358bp PCR fragment was unambiguously identified as TR.  The 331bp 

fragment was found to encode a TR different from the one previously isolated

(Llewellyn et al., 1999) and showed highest similarity to Japanese flounder TRB, 

suggesting the amplified 331bp fragment represents halibut TRB.  The larger size of the 

TR PCR product (358bp) is the result of a 27bp insertion present in most teleost TR

genes described to date (see below), but absent in all TRs, all tetrapod TRs, and TRs 

from dogfish and lamprey (GenBank accession numbers ABC49722, ABC49723, 

AAO53268, AAO532689).  The amino acid sequences encoded by the cloned halibut

TRB and TR, together with the corresponding region of halibut TRA, are shown in 

Fig 1.

3.2 Expression of TRs during metamorphosis

Real time PCR was used to quantify expression of halibut TRA, TRB and TR during 

metamorphosis. The larvae used were staged as described previously (Sæle et al., 2004) 

and expression levels were normalised with respect to the expression of 18s rRNA.  The 
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results of these analyses are presented in Fig. 2. TRA is expressed in all stages with an 

apparent peak at stage 9 (metamorphic climax).  However, there was considerable 

variability between individual larvae at this stage and this peak was not statistically 

significant.  TRB is expressed throughout metamorphosis with a peak at stage 7 and a 

marked, statistically significant decline (p<0.05) in expression on the completion of 

metamorphosis at stage 10.  TR shows the most dramatic expression profile with a clear, 

statistically significant peak (p<0.05) during stage 9.  

3.3 Atlantic halibut whole body TH during metamorphosis

T3 and T4 contents were determined in larvae from stage 5-10 and the results are shown 

in Fig. 2.  T4 levels are low and relatively constant from stage 5 to stage 8 larvae and low

levels of T3 are also detected and decline significantly (p<0.05) from stage 5 to stage 8 

larvae. Subsequently, T3 levels peak dramatically at metamorphic climax (stage 9) and 

are still significantly (p<0.05) elevated in post-metamorphic (stage 10) animals.  Prior to 

stage 9 T4 is considerably more abundant that T3, but this relationship is inverted in 

stages 9 and 10.

3.4 TR splice variants

In teleosts, TR splice variants have been identified that involve the linker region of TR

(Yamano and Inui, 1995; Marchand et al., 2001; Kawakami et al., 2003b), which includes 

the 27 nucleotide fish TR-specific insert described above (Fig. 1).  To determine 

whether any such splice variants arise during Atlantic halibut metamorphosis, RT-PCR 

was performed using RNA from all larval stages and a variety of adult tissues with 
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primers that flank the TR linker region.  Each sample generated two discrete PCR 

products (Fig. 3a), the smaller of which was of the size predicted from the sequence of 

the TR clone (including the 27bp insert) while the larger fragment contained an 

additional 60bp. Sequence analysis of the two fragments revealed that the smaller 

fragment corresponded exactly to that of the Atlantic halibut TR sequence described 

above, and that the larger fragment was identical to the smaller with the exception of a 60 

bp insert directly upstream of the 27bp fish TR-specific insert (see Fig. 3c).  This 

resembles the situation in Japanese flounder where two similar TR splice variants occur.  

We therefore follow the flounder nomenclature in designating the smaller variant TRA 

and the larger TRB.

The real-time PCR analysis presented in Fig. 2 utilised TR primers that recognise 

sequences common to both splice variants.  It should be noted that the PCRs shown in

Fig. 3a are not quantitative and do not allow comparison of expression levels between 

samples but do allow estimation of the ratio of the two splice variants which, as in a 

competitive PCR, should be independent of cycle number.  Therefore, to determine 

whether there was a change in the ratio of the TR isoforms during metamorphosis a 

more extensive RT-PCR analysis using RNA from 5 replicate larvae from each stage of 

metamorphosis was performed.  Both splice variants were found in all developmental 

stages, with the ratio between the forms essentially constant and the smaller isoform 

predominating (Fig. 3b).  In contrast, Fig. 3a indicates that the ratio of the TR splice 

variant isoforms varies considerably between different adult tissues, with the larger form 
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making a more significant contribution to total TR levels in brain, cardiac muscle, red 

muscle and white muscle. 

3.5 Structure of teleost TR genes

Clearly there is some variability in the TR isoforms found in different fish species, and 

between fish and tetrapods.  Teleost TR genes characterised to date contain a 27bp 

insert missing from the corresponding gene from tetrapods (as well as from TR genes 

from both fish and tetrapods).  However, in Atlantic salmon (Marchand et al., 2001) this 

insert is absent from some transcripts due to alternative splicing.  Similarly the 27bp 

insert appears present in some but not all TR transcripts from zebrafish (Danio rerio) 

since two zebrafish TR cDNA sequences have been deposited in GenBank that either 

include or lack the insert sequence (accession numbers NM_131340 and AF302242). 

Two alternatively spliced forms of TR have also been found in Japanese flounder

(Yamano and Inui, 1995) and Atlantic halibut (this study), but in contrast to Atlantic 

salmon and zebrafish, they both contain the 27bp fish-TR specific insert with the larger 

isoform having an additional insert of 60bp immediately prior to it.

In an attempt to determine the origin of the different TR splice variants, we analysed the 

sequence of Fugu Mayffold M001021, which includes the TR gene.  Comparison of the 

genomic sequence of Fugu TR to the full length TR cDNA (Nowell et al., 2001) from 

sea bream (Sparus auratus) and the partial cDNA from Atlantic halibut using Spidey 

(http://www.ncbi.nlm.nih.gov/spidey/) indicated that the coding sequence of Fugu TR is 

split into 9 exons (not shown).  Exon 6 encodes both the 27bp fish-specific insert and the 
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larger splice variant (which includes the extra 60bp) present in both Atlantic halibut and 

Japanese flounder.  This larger variant arises because the upstream intron has two 

potential 3′ (acceptor) splice sites.  When the more downstream site is used the resulting 

mRNA contains the 27 bp fish specific insert.  However, both the 27bp insert and the 

additional 60 nucleotides immediately upstream of it are included in transcripts generated 

by use of the more upstream splice site.  The sequences of the alternatively spliced region 

of the Atlantic halibut TRs, and the proposed origin of the alternatively spliced variants, 

are shown in Fig. 3c and Fig. 3d.  Although the gene structure shown in Fig. 3d is based 

on analysis of the Fugu genome, we have obtained strong evidence that this organisation 

is conserved in Atlantic halibut.  PCR reactions were performed on Atlantic halibut 

genomic DNA with primers that recognise sequences in exon 7 and the 5′ region of exon 

6 (GTATTTGCCATGGACGCTTG and CGAGGAAGCTATGCTCTCTAATG 

respectively).  This led to the isolation and subsequent sequencing of a 448 bp fragment 

that, as predicted, includes a contiguous sequence corresponding to the 27bp and 60bp 

TR-specific inserts (i.e. the sequences designated exon 6a and exon 6b in Fig. 3D), 

followed by a 325bp intron and a short region of exon 7 (data not shown). 

4.  Discussion

4.1 The TR family in fish  

A confusing collection of TR sequences have been described in fish including some 

isoforms that represent the products of distinct genes and others that arise through 
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alternative splicing.  Two TR genes have been described in Japanese flounder, conger 

eel and Atlantic salmon and searches of the genome sequence of Fugu rubripes indicate 

two TR genes in this species also.  However, only one TR gene appears to be present 

in the Fugu genome and only one TR gene has been found in most teleost species, 

although multiple isoforms may be produced through alternative splicing.  An exception 

is the conger eel which has at least two TR genes.  In an attempt to determine 

relationships between the different receptor isoforms in teleosts, phylogenetic analyses 

were performed using teleost TR protein sequences (the regions corresponding to the 

amino acid sequences shown in Fig. 1).  Unfortunately parsimony, maximum likelihood 

and distance methods, each gave trees with differing topologies and with branches often

having very weak bootstrap support (not shown).  However, all trees showed TRs 

forming a separate branch, with the two conger eel TR genes grouped together.  It 

therefore seems most likely that, following the whole genome duplication believed to 

have occurred during teleost evolution (Jaillon et al., 2004), duplicated TR genes were 

retained whereas one of the duplicated TRgenes was lost, with a subsequent TR gene 

duplication occurring in the anguilliform lineage.  

Alternative splicing of TR transcripts is commonly seen in teleosts, with the TR genes 

of Atlantic salmon, zebrafish, Japanese flounder, Atlantic halibut and conger eel each 

producing two or more isoforms through alternative splicing.  However, the alternative 

splicing products from the Atlantic salmon and zebrafish gene differ somewhat from 

those of the other species.  Atlantic salmon and zebrafish produce alternatively spliced 

TR transcripts that either lack or possess the 27bp teleost-specific insert.  In contrast, all 
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TR mRNAs in Japanese flounder, Atlantic halibut and conger eel possess the 27bp 

insert, but each of these species also produces an additional TR splice variant that

includes an additional 60 nucleotides immediately upstream of the 27 nucleotide insert

referred to above. Our analysis of the TR gene from Fugu shows the presence of a fish-

specific TR exon and indicates that the splice variants in Atlantic halibut, Japanese

flounder and Conger eel most likely arise due to the use of alternative 3′ splice sites (Fig. 

3). There is as yet no evidence as to whether there are functional differences between the 

TR splice variants or between TRA and TRB.

4.2 Whole body TH levels in metamorphosing larvae

The variations during Atlantic halibut ontogeny of T4 and T3 in the present study are 

similar, but not identical, to those found in a previous study of the ontogeny of the 

pituitary thyroid axis in the Atlantic halibut (Einarsdottir et al., 2006). In the present 

study, much lower variability in TH levels between individuals of the same stage was

obtained and a significantly higher concentration of both T4 and T3 was detected at 

metamorphosis (stage 9). The reason for the difference between the two studies may be a 

consequence of the careful collection of individual samples instead of pools, use of a

validated staging scheme (Sæle et al., 2004) and the introduction of a heat treatment step

prior to RIA of samples. Although previous studies of THs during ontogeny of salmonids

(de Jesus and Hirano, 1992; Tagawa and Hirano, 1987; Leatherland et al., 1989), striped 

bass (Morone saxatilis) and conger eel (Brown et al., 1987; Yamano et al., 1991b) have 

not reported problems of interassay variability of T3 in the same samples or between 

different samples, this was found to be a difficulty with the Atlantic halibut larval 
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extracts. The use of a heat treatment is an indispensable step in sample preparation for the 

analysis of THs in human plasma samples (Neeley and Alexander, 1983) in order to 

overcome the “matrix” effect caused by complexity of biological samples (Selby, 1999).

In the present study, after extensive validation sample heat treatment was introduced 

prior to assaying larval extracts.

T4 levels were low and showed relatively little variation up until metamorphosis (stage 9) 

and immediately after metamorphosis (stage 10) when it was significantly higher than all 

previous developmental stages. A dramatic increase in T3 occurred at metamorphic 

climax (Fig, 2).  This is not surprising given that T3 is the more potent form of thyroid 

hormone and that thyroid hormone treatment is known to drive metamorphosis.  These 

observations provide further confirmation of the importance of thyroid hormones in 

flatfish metamorphosis and are remarkably similar to observations in the amphibian 

Xenopus laevis in which both T4 and T3 are elevated during metamorphosis.  However,

the results contrast somewhat to those in Japanese flounder (De Jesus et al., 1991) in 

which T4 peaks but T3 does not during metamorphosis. It would be of interest to 

reassesses the concentration of THs previously reported in a number of teleosts after the 

introduction of a heat treatment step in sample preparation.

4.3 Expression of TRs during metamorphosis of Atlantic halibut

Using quantitative PCR, TRB was found to be expressed at similar levels throughout 

most stages of metamorphosis with a clear decline in expression in metamorphosed 

juveniles (stage 10).  TRA appears to peak at stage 9 as does TR, with the latter but 
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not former peak being statistically significant.  The TR measurements reflect the total 

amount of TR mRNA, i.e. both the TRA and TRB splice variants.  RT-PCR analysis 

showed that the ratio of the small and large forms is essentially constant throughout 

metamorphosis, with the smaller (TRA) form predominating.  

The TR expression profiles we report for Atlantic halibut are similar, but not identical, to 

those described in two other flatfish, turbot (Scophtalmus maximus) and Japanese 

flounder (Marchand et al., 2004; Yamano and Miwa, 1998), with the changes in TR gene 

expression in all three flatfish species being markedly less dramatic than those that occur 

during amphibian metamorphosis (Yaoita and Brown, 1990).  TRB expression appears 

to contribute a greater proportion of total TR in Atlantic halibut than in Japanese flounder 

(no data on TRB is available from turbot), and, more significantly, in Atlantic halibut it 

is TR that shows the most distinct peak during metamorphosis whereas in Japanese 

flounder and turbot it is TRA.  In turbot, TR expression has been reported as being

low and relatively constant throughout metamorphosis, increasing thereafter.  In Japanese 

flounder TR levels are elevated at metamorphic climax, but reach still higher level in 

post-climax individuals.

In summary, in the flatfish species analysed to date there is appreciable expression of 

TRs prior to metamorphosis with TR and/or TRA peaking around metamorphic 

climax.  TR2 expression in Atlantic halibut and Japanese flounder is more constant 

although in both species there is a decline in transcript levels after the completion of 

metamorphosis.  The expression profiles of TRs in flatfish are consistent with the model
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previously proposed for Xenopus laevis (Sachs et al., 2000) in which, prior to 

metamorphosis, TRs in the absence of ligand act as repressors of metamorphosis-

associated genes.  As THs accumulate the receptors become associated with ligand and 

activate rather than repress their target genes.  The change in receptor expression detected 

during the present study may indicate that TRA and TR are themselves the products of 

TH-target genes thus explaining their increased expression during metamorphic climax.  

Consistent with this, studies in zebrafish suggest that both TRA and TR are TH-

inducible (Liu et al., 2000).  Further investigation is needed to fully understand the roles 

of THs in flatfish metamorphosis, especially the question of how THs can evoke a 

response that leads to body asymmetry.  Important goals for future investigation will be 

to determine the expression profiles of the deiodinase enzymes that regulate TH levels in 

peripheral tissues and to identify genes that are induced or repressed at metamorphosis by 

THs.
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Figure Legends

Fig. 1.  Partial amino acid sequences of TRA, TRB and TR from Atlantic halibut.  
An asterisk (*) indicates a residue identical to that of TRA.  Hyphens (-) represent 
spaces inserted to maximise similarity.

Fig. 2.  The top three panels show the relative expression of TRA, TRB and TR. The 
bottom two panels show changes in whole-animal T4 and T3 content (pg/mg) during 
halibut metamorphosis. Bars indicate standard error. In these analyses, stages with the 
same letter are not significantly different, those with different letters are significantly 
different (p<0.05).

Fig. 3.  A) Analysis by RT-PCR of expression of splice variants of TR during larval 
development and in adult tissues.  The 197bp and 257bp PCR products correspond to 
TRA and TRB respectively.  B) Ratio of TRA:TRB splice variants in different 
developmental stages as determined by RT-PCR analysis of RNA from five individual 
larvae of each stage.  Error bars indicate standard error.  C) cDNA sequences of the 
alternatively spliced region of the halibut TR isoforms TRA and TRB.  The 27bp fish 
TR-specific insert is shown in bold and the additional nucleotides present in TRB are 
underlined.  D) Putative organisation of the Atlantic halibut TR gene, based on analysis 
of the TR sequence from Fugu rubripes.  Rectangles represent exons with numbers 
corresponding to exon number in the Fugu gene.  Exon 6 is alternatively spliced, with 
shading showing the 27bp fish-specific TR insert and the stippled box representing the 
additional 60 nucleotides present in TRB.  Dotted and dashed lines show the splicing 
patterns that generate TRA and TRB respectively.  The arrows above exon 6 indicate 
alterative 3′ splice sites; the horizontal, double headed arrow indicates the region for 
which halibut genomic sequence has been obtained.
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