31 research outputs found

    Summer melt regulates winter glacier flow speeds throughout Alaska

    Get PDF
    pre-printPredicting how climate change will affect glacier and ice sheet flow speeds remains a large hurdle toward accurate sea level rise forecasting. Increases in surface melt rates are known to accelerate glacier flow in summer, whereas in winter, flow speeds are believed to be relatively invariant. Here we show that wintertime flow speeds on nearly all major glaciers throughout Alaska are not only variable but are inversely related to melt from preceding summers. For each additional meter of summertime melt, we observe an 11% decrease in wintertime velocity on glaciers of all sizes, geometries, climates, and bed types. This dynamic occurs because interannual differences in summertime melt affect how much water is retained in the subglacial system during winter. The ubiquity of the dynamic indicates it occurs globally on glaciers and ice sheets not frozen to their beds and thus constitutes a new mechanism affecting sea level rise projections

    Improving Predictions for Helium Emission Lines

    Get PDF
    We have combined the detailed He I recombination model of Smits with the collisional transitions of Sawey & Berrington in order to produce new accurate helium emissivities that include the effects of collisional excitation from both the 2 (3)S and 2 (1) S levels. We present a grid of emissivities for a range of temperature and densities along with analytical fits and error estimates. Fits accurate to within 1% are given for the emissivities of the brightest lines over a restricted range for estimates of primordial helium abundance. We characterize the analysis uncertainties associated with uncertainties in temperature, density, fitting functions, and input atomic data. We estimate that atomic data uncertainties alone may limit abundance estimates to an accuracy of 1.5%; systematic errors may be greater than this. This analysis uncertainty must be incorporated when attempting to make high accuracy estimates of the helium abundance. For example, in recent determinations of the primordial helium abundance, uncertainties in the input atomic data have been neglected.Comment: ApJ, accepte

    Extensive Liquid Meltwater Storage in Firn Within the Greenland Ice Sheet

    Get PDF
    The accelerating loss of mass from the Greenland ice sheet is a major contribution to current sea level rise. Increased melt water runoff is responsible for half of Greenlands mass loss increase. Surface melt has been increasing in extent and intensity, setting a record for surface area melt and runoff in 2012. The mechanisms and timescales involved in allowing surface melt water to reach the ocean where it can contribute to sea level rise are poorly understood. The potential capacity to store this water in liquid or frozen form in the firn (multi-year snow layer) is significant, and could delay its sea-level contribution. Here we describe direct observation of water within a perennial firn aquifer persisting throughout the winter in the southern ice sheet,where snow accumulation and melt rates are high. This represents a previously unknown storagemode for water within the ice sheet. Ice cores, groundairborne radar and a regional climatemodel are used to estimate aquifer area (70 plue or minus 10 x 10(exp 3) square kilometers ) and water table depth (5-50 m). The perennial firn aquifer represents a new glacier facies to be considered 29 in future ice sheet mass 30 and energy budget calculations

    Modification of a Hydrophobic Layer by a Point Mutation in Syntaxin 1A Regulates the Rate of Synaptic Vesicle Fusion

    Get PDF
    Both constitutive secretion and Ca(2+)-regulated exocytosis require the assembly of the soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes. At present, little is known about how the SNARE complexes mediating these two distinct pathways differ in structure. Using the Drosophila neuromuscular synapse as a model, we show that a mutation modifying a hydrophobic layer in syntaxin 1A regulates the rate of vesicle fusion. Syntaxin 1A molecules share a highly conserved threonine in the C-terminal +7 layer near the transmembrane domain. Mutation of this threonine to isoleucine results in a structural change that more closely resembles those found in syntaxins ascribed to the constitutive secretory pathway. Flies carrying the I254 mutant protein have increased levels of SNARE complexes and dramatically enhanced rate of both constitutive and evoked vesicle fusion. In contrast, overexpression of the T254 wild-type protein in neurons reduces vesicle fusion only in the I254 mutant background. These results are consistent with molecular dynamics simulations of the SNARE core complex, suggesting that T254 serves as an internal brake to dampen SNARE zippering and impede vesicle fusion, whereas I254 favors fusion by enhancing intermolecular interaction within the SNARE core complex

    Mutational analysis of the C-terminal FATC domain of Saccharomyces cerevisiae Tra1

    Get PDF
    Tra1 is a component of the Saccharomyces cerevisiae SAGA and NuA4 complexes and a member of the PIKK family, which contain a C-terminal phosphatidylinositol 3-kinase-like (PI3K) domain followed by a 35-residue FATC domain. Single residue changes of L3733A and F3744A, within the FATC domain, resulted in transcriptional changes and phenotypes that were similar but not identical to those caused by mutations in the PI3K domain or deletions of other SAGA or NuA4 components. The distinct nature of the FATC mutations was also apparent from the additive effect of tra1-L3733A with SAGA, NuA4, and tra1 PI3K domain mutations. Tra1-L3733A associates with SAGA and NuA4 components and with the Gal4 activation domain, to the same extent as wild-type Tra1; however, steady-state levels of Tra1-L3733A were reduced. We suggest that decreased stability of Tra1-L3733A accounts for the phenotypes since intragenic suppressors of tra1-L3733A restored Tra1 levels, and reducing wild-type Tra1 led to comparable growth defects. Also supporting a key role for the FATC domain in the structure/function of Tra1, addition of a C-terminal glycine residue resulted in decreased association with Spt7 and Esa1, and loss of cellular viability. These findings demonstrate the regulatory potential of mechanisms targeting the FATC domains of PIKK proteins

    Insights into hominid evolution from the gorilla genome sequence.

    Get PDF
    Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    MS

    No full text
    thesisPast estimates of Greenland Ice Sheet accumulation rates have been multiyear climatologies based on ice/firn cores and coastal precipitation records. Existing annually resolved estimates have incompletely quantified uncertainty, due primarily to incomplete spatial coverage. This study improves upon these shortcomings by calibrating annual (1958-2007) solid precipitation output from the Fifth Generation Mesoscale Model modified for polar climates (Polar MM5) using firn core and meteorological station data. The calibration employs spatial interpolation of regionally derived linear correction functions. Residual uncertainties exhibit coherent spatial patterns, which are modeled via spatial interpolation of root mean squared errors. Mean 1958-2007 Greenland Ice Sheet annual accumulation rate is 337±48 mm w. eq. or 591 ±83 Gt. Annual estimates contain one standard deviation uncertainties of 74 mm w. eq., 22%, or 129 Gt. Accumulation rates in southeast Greenland are found to exceed 2000 mm w. eq. and to dominate interannual variability in Greenland Ice Sheet total accumulated mass, representing 31% of the whole. Higher accumulation rates in the southeast are of sufficient magnitude to affect even the sign of Greenland mass balance during some years. The only statistically significant temporal change in total ice sheet accumulation in the 1958-2007 period occurred between 1960 and 1972 when a simultaneous accumulation increase and decrease occurred in west and east Greenland, respectively. No statistically significant uniform change in ice-sheet-wide accumulation is evident after 1972. However, regional changes do occur, including an accumulation increase on the west coast post-1992. The high accumulation rates of 2002-2003 appear to be confined to the southeast
    corecore