586 research outputs found

    Bridging the gap between complexity science and clinical practice by formalizing idiographic theories: a computational model of functional analysis

    Get PDF
    Background: The past decades of research have seen an increase in statistical tools to explore the complex dynamics of mental health from patient data, yet the application of these tools in clinical practice remains uncommon. This is surprising, given that clinical reasoning, e.g., case conceptualizations, largely coincides with the dynamical system approach. We argue that the gap between statistical tools and clinical practice can partly be explained by the fact that current estimation techniques disregard theoretical and practical considerations relevant to psychotherapy. To address this issue, we propose that case conceptualizations should be formalized. We illustrate this approach by introducing a computational model of functional analysis, a framework commonly used by practitioners to formulate case conceptualizations and design patient-tailored treatment. Methods: We outline the general approach of formalizing idiographic theories, drawing on the example of a functional analysis for a patient suffering from panic disorder. We specified the system using a series of differential equations and simulated different scenarios; first, we simulated data without intervening in the system to examine the effects of avoidant coping on the development of panic symptomatic. Second, we formalized two interventions commonly used in cognitive behavioral therapy (CBT; exposure and cognitive reappraisal) and subsequently simulated their effects on the system. Results: The first simulation showed that the specified system could recover several aspects of the phenomenon (panic disorder), however, also showed some incongruency with the nature of panic attacks (e.g., rapid decreases were not observed). The second simulation study illustrated differential effects of CBT interventions for this patient. All tested interventions could decrease panic levels in the system. Conclusions: Formalizing idiographic theories is promising in bridging the gap between complexity science and clinical practice and can help foster more rigorous scientific practices in psychotherapy, through enhancing theory development. More precise case conceptualizations could potentially improve intervention planning and treatment outcomes. We discuss applications in psychotherapy and future directions, amongst others barriers for systematic theory evaluation and extending the framework to incorporate interactions between individual systems, relevant for modeling social learning processes. With this report, we hope to stimulate future efforts in formalizing clinical frameworks

    From Feshbach-Resonance Managed Bose-Einstein Condensates to Anisotropic Universes: Some Applications of the Ermakov-Pinney equation with Time-Dependent Nonlinearity

    Get PDF
    In this work we revisit the topic of two-dimensional Bose-Einstein condensates under the influence of time-dependent magnetic confinement and time-dependent scattering length. A moment approach reduces the examination of moments of the wavefunction (in particular, of its width) to an Ermakov-Pinney (EP) ordinary differential equation (ODE). We use the well-known structure of the solutions of this nonlinear ODE to ``engineer'' trapping and interatomic interaction conditions that lead to condensates dispersing, breathing or even collapsing. The advantage of the approach is that it is fully tractable analytically, in excellent agreement with our numerical observations. As an aside, we also discuss how similar time-dependent EP equations may arise in the description of anisotropic scalar field cosmologies.Comment: 9 pages, 4 figure

    Matter wave solitons at finite temperatures

    Full text link
    We consider the dynamics of a dark soliton in an elongated harmonically trapped Bose-Einstein condensate. A central question concerns the behavior at finite temperatures, where dissipation arises due to the presence of a thermal cloud. We study this problem using coupled Gross-Pitaevskii and NN-body simulations, which include the mean field coupling between the condensate and thermal cloud. We find that the soliton decays relatively quickly even at very low temperatures, with the decay rate increasing with rising temperature.Comment: 6 pages, 2 figures, submitted to the Proceedings of QFS '0

    Influence of intensive melt shearing on the microstructure and mechanical properties of an Al-Mg alloy with high added impurity content

    Get PDF
    The official published version can be accessed from the link below - Copyright @ The Minerals, Metals & Materials Society and ASM International 2011We have investigated the influence of melt conditioning by intensive shearing on the mechanical behavior and microstructure of Al-Mg-Mn-Fe-Cu-Si alloy sheet produced from a small book mold ingot with high added impurity content. The melt conditioned ingot has fine grains throughout its cross section, whereas a conventionally cast ingot, without melt shearing, has coarser grains and shows a wider variation of grain size. Both needle-shaped and coarse Chinese script iron bearing intermetallic particles are found in the microstructure at the center of the conventionally processed ingot, but for the melt conditioned ingot, only fine Chinese script intermetallic particles are observed. In addition to the iron bearing intermetallics, Mg2Si particles are also observed. The ingots were rolled to thin sheet and solution heat treated (SHT). During rolling, the iron-based intermetallics and Mg2Si particles are broken and aligned along the rolling direction. Yield strength (YS), ultimate tensile strength (UTS), and elongation of the intensively melt sheared and processed sheet are all improved compared to the conventionally cast and processed sheet. Fractographic analysis of the tensile fracture surfaces shows that the clustered and coarse iron bearing intermetallic particles are responsible for the observed reduction in mechanical properties of the conventionally cast sheet. We have shown that by refining the initial microstructure of the ingot by intensive shear melt conditioning, it is possible to achieve improved mechanical properties at the final sheet gage of an AlMgMn alloy with a high content of impurities.This study is under the Technology Strategy Board funded REALCAR projec

    Dynamics of trapped bright solitons in the presence of localized inhomogeneities

    Get PDF
    We examine the dynamics of a bright solitary wave in the presence of a repulsive or attractive localized ``impurity'' in Bose-Einstein condensates (BECs). We study the generation and stability of a pair of steady states in the vicinity of the impurity as the impurity strength is varied. These two new steady states, one stable and one unstable, disappear through a saddle-node bifurcation as the strength of the impurity is decreased. The dynamics of the soliton is also examined in all the cases (including cases where the soliton is offset from one of the relevant fixed points). The numerical results are corroborated by theoretical calculations which are in very good agreement with the numerical findings.Comment: 8 pages, 5 composite figures with low res (for high res pics please go to http://www.rohan.sdsu.edu/~rcarrete/ [Publications] [Publication#41

    Boson gas in a periodic array of tubes

    Full text link
    We report the thermodynamic properties of an ideal boson gas confined in an infinite periodic array of channels modeled by two, mutually perpendicular, Kronig-Penney delta-potentials. The particle's motion is hindered in the x-y directions, allowing tunneling of particles through the walls, while no confinement along the z direction is considered. It is shown that there exists a finite Bose- Einstein condensation (BEC) critical temperature Tc that decreases monotonically from the 3D ideal boson gas (IBG) value T0T_{0} as the strength of confinement P0P_{0} is increased while keeping the channel's cross section, axaya_{x}a_{y} constant. In contrast, Tc is a non-monotonic function of the cross-section area for fixed P0P_{0}. In addition to the BEC cusp, the specific heat exhibits a set of maxima and minima. The minimum located at the highest temperature is a clear signal of the confinement effect which occurs when the boson wavelength is twice the cross-section side size. This confinement is amplified when the wall strength is increased until a dimensional crossover from 3D to 1D is produced. Some of these features in the specific heat obtained from this simple model can be related, qualitatively, to at least two different experimental situations: 4^4He adsorbed within the interstitial channels of a bundle of carbon nanotubes and superconductor-multistrand-wires Nb3_{3}Sn.Comment: 9 pages, 10 figures, submitte

    Collisional-inhomogeneity-induced generation of matter-wave dark solitons

    Get PDF
    We propose an experimentally relevant protocol for the controlled generation of matter-wave dark solitons in atomic Bose-Einstein condensates (BECs). In particular, using direct numerical simulations, we show that by switching-on a spatially inhomogeneous (step-like) change of the s-wave scattering length, it is possible to generate a controllable number of dark solitons in a quasi-one-dimensional BEC. A similar phenomenology is also found in the two-dimensional setting of "disk-shaped" BECs but, as the solitons are subject to the snaking instability, they decay into vortex structures. A detailed investigation of how the parameters involved affect the emergence and evolution of solitons and vortices is provided.Comment: 8 pages, 5 Figures, Physics Letters A (in press

    Matter-Wave Solitons in the Presence of Collisional Inhomogeneities: Perturbation theory and the impact of derivative terms

    Get PDF
    We study the dynamics of bright and dark matter-wave solitons in the presence of a spatially varying nonlinearity. When the spatial variation does not involve zero crossings, a transformation is used to bring the problem to a standard nonlinear Schrodinger form, but with two additional terms: an effective potential one and a non-potential term. We illustrate how to apply perturbation theory of dark and bright solitons to the transformed equations. We develop the general case, but primarily focus on the non-standard special case whereby the potential term vanishes, for an inverse square spatial dependence of the nonlinearity. In both cases of repulsive and attractive interactions, appropriate versions of the soliton perturbation theory are shown to accurately describe the soliton dynamics.Comment: 12 pages, 5 fugure
    • 

    corecore