25 research outputs found

    MIP/Aquaporin 0 Represents a Direct Transcriptional Target of PITX3 in the Developing Lens

    Get PDF
    The PITX3 bicoid-type homeodomain transcription factor plays an important role in lens development in vertebrates. PITX3 deficiency results in a spectrum of phenotypes from isolated cataracts to microphthalmia in humans, and lens degeneration in mice and zebrafish. While identification of downstream targets of PITX3 is vital for understanding the mechanisms of normal ocular development and human disease, these targets remain largely unknown. To isolate genes that are directly regulated by PITX3, we performed a search for genomic sequences that contain evolutionarily conserved bicoid/PITX3 binding sites and are located in the proximity of known genes. Two bicoid sites that are conserved from zebrafish to human were identified within the human promoter of the major intrinsic protein of lens fiber, MIP/AQP0. MIP/AQP0 deficiency was previously shown to be associated with lens defects in humans and mice. We demonstrate by both chromatin immunoprecipitation and electrophoretic mobility shift assay that PITX3 binds to MIP/AQP0 promoter region in vivo and is able to interact with both bicoid sites in vitro. In addition, we show that wild-type PITX3 is able to activate the MIP/AQP0 promoter via interaction with the proximal bicoid site in cotransfection experiments and that the introduction of mutations disrupting binding to this site abolishes this activation. Furthermore, mutant forms of PITX3 fail to produce the same levels of transactivation as wild-type when cotransfected with the MIP/AQP0 reporter. Finally, knockdown of pitx3 in zebrafish affects formation of a DNA-protein complex associated with mip1 promoter sequences; and examination of expression in pitx3 morphant and control zebrafish revealed a delay in and reduction of mip1 expression in pitx3-deficient embryos. Therefore, our data suggest that PITX3 is involved in direct regulation of MIP/AQP0 expression and that the alteration of MIP/AQP0 expression is likely to contribute to the lens phenotype in cataract patients with PITX3 mutations

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature

    Latitude dictates plant diversity effects on instream decomposition

    Get PDF
    Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113 degrees of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes

    Ethnic and mouse strain differences in central corneal thickness and association with pigmentation phenotype

    Get PDF
    The cornea is a transparent structure that permits the refraction of light into the eye. Evidence from a range of studies indicates that central corneal thickness (CCT) is strongly genetically determined. Support for a genetic component comes from data showing significant variation in CCT between different human ethnic groups. Interestingly, these studies also appear to show that skin pigmentation may influence CCT. To validate these observations, we undertook the first analysis of CCT in an oculocutaneous albinism (OCA) and Ugandan cohort, populations with distinct skin pigmentation phenotypes. There was a significant difference in the mean CCT of the OCA, Ugandan and Australian-Caucasian cohorts (Ugandan: 517.3±37 µm; Caucasian: 539.7±32.8 µm, OCA: 563.3±37.2 µm; p<0.001). A meta-analysis of 53 studies investigating the CCT of different ethnic groups was then performed and demonstrated that darker skin pigmentation is associated with a thinner CCT (p<0.001). To further verify these observations, we measured CCT in 13 different inbred mouse strains and found a significant difference between the albino and pigmented strains (p = 0.008). Specific mutations within the melanin synthesis pathway were then investigated in mice for an association with CCT. Significant differences between mutant and wild type strains were seen with the nonagouti (p<0.001), myosin VA (p<0.001), tyrosinase (p = 0.025) and tyrosinase related protein (p = 0.001) genes. These findings provide support for our hypothesis that pigmentation is associated with CCT and identifies pigment-related genes as candidates for developmental determination of a non-pigmented structure.David P. Dimasi, Alex W. Hewitt, Kenneth Kagame, Sam Ruvama, Ludovica Tindyebwa, Bastien Llamas, Kirsty A. Kirk, Paul Mitchell, Kathryn P. Burdon and Jamie E. Crai

    Integrative analysis of stressor gradients reveals multiple discrete trait‐defined axes underlie community assembly

    Get PDF
    The generalizable functional attributes of organisms (traits) relate strongly to their environment across multiple levels of biological organization, making trait-based approaches a powerful mechanistic framework to understand species distributions and community composition in relation to environmental change. To investigate how a wide range of stressor types shape stream macroinvertebrate communities, we conducted an integrative analysis using community and taxon trait information across drying, flooding, eutrophication, fine sediment, and acid mine drainage (AMD) gradients. Each gradient spanned relatively unimpacted to severely impacted sites. To characterize community change in response to stressors, we incorporated abundance-based trait information from all stressor gradients in a single trait-based ordination (nonmetric multidimensional scaling), defining the trait space within which each stressor gradient acted. We hypothesized that different stressors would apply different environmental filters, moving communities along distinct axes in trait space and resulting in communities with definable trait combinations. Particularly strong relationships were associated with anthropogenically derived stressors (fine sediment, eutrophication, and AMD) compared to natural stressors (drying and flooding). Anthropogenic stressors instigated significant movement of communities along multiple axes in trait space, likely driven by limited adaptation to these novel stressors. We demonstrate that trait-based analysis of communities across multiple stressor gradients can support a more comprehensive understanding of how community composition changes than taxonomic methods or investigation of a single stressor type, and could underpin community-focused management actions

    The role of pliability and transversality within trans/disciplinarity: Opening university research and learning to planetary health

    Full text link
    © Springer International Publishing AG, part of Springer Nature 2018. In recent decades, there have been calls to open university research and learning through transdisciplinarity. The inference here is that the increased specialisation of disciplines has created isolation, division, exclusion, separation and fixity within research and learning. This chapter explores the potential for openness in university research and learning through a discussion of the relationality of transdisciplinarity and disciplinarity. An examination of this relationality is valuable, given that transdisciplinarity and disciplinarity are intimately connected and co-dependent. This relationality is explored through two concepts that we argue constitute its potential to create openness in university research and learning: pliability and transversality. This chapter argues that disciplines, be they science, planning, law, health or religion, manage to be both open to change, constantly becoming-other, and universal, abstract, and eternal. Whilst this pliability of disciplinarity is often translated as disciplinary inadequacy, we argue that this pliability is a valuable component of disciplinarity, and that it provides the site for the transversality of transdisciplinarity. We explore these concepts through reference to a recent problematization of disciplinary research and learning at the human and environment nexus, which has given rise to the notion of planetary health, and its call for a substantial and urgent opening of research and learning to understand and address emerging geo-social assemblages such as the Anthropocene

    Fibronectin-mediated upregulation of α5β1 integrin and cell adhesion during differentiation of mouse embryonic stem cells

    No full text
    Embryonic stem (ES) cells have a broad potential application in regenerative medicine and can be differentiated into cells of all three germ layers. Adhesion of ES cells to extracellular matrix (ECM) proteins is essential for the differentiation pathway; cell-ECM adhesion is mediated by integrins that have the ability to activate many intracellular signaling pathways. Therefore, we hypothesize that the expression and function of integrin receptors is a critical step in ES differentiation. Using functional cell adhesion assays, our study demonstrates that α5β1 is a major functional integrin receptor expressed on the cell surface of undifferentiated mouse ES-D3 cells, which showed significantly higher binding to fibronectin as compared to collagens. This adhesion was specifically mediated by integrin α5β1 as evident from the inhibition with a disintegrin selective for this particular integrin. Differentiation of ES-D3 cells on fibronectin or on a collagen type1/fibronectin matrix, caused further selective upregulation of the α5β1 integrin. Differentiation of the cells, as evaluated by immunofluorescence, FACS analysis and quantitative RT-PCR, was accompanied by the upregulation of mesenchymal (Flk1, isolectin B4, α-SMA, vimentin) and endodermal markers (FoxA2, SOX 17, cytokeratin) in parallel to increased expression of α5β1 integrin. Taken together, the data indicate that fibronectin-mediated, upregulation of α5β1 integrin and adhesion of ES-D3 cells to specific ECM molecules are linked to early stages of mouse embryonic stem cells commitment to meso-endodermal differentiation
    corecore