477 research outputs found
Readout technologies for directional WIMP Dark Matter detection
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies
Social Costs and Benefits of Water Resources Construction
This report analyzes and describes the process of relocating individuals and families who must move due to reservoir construction in Kentucky utilizing data collected in previous research. These data come from four separate studies: a study of community attitudes toward reservoir construction (Johnson county where the Paintsville reservoir is to be constructed), interviews with people who are slated for relocation when the Taylorsville reservoir is constructed, and two sets of interviews with people who have already been relocated due to reservoir construction (Cave Run and Carr Fork).
Psychological, social, economic and material costs and benefits associated with forced relocation are presented, and the role of the relocation agency (The Army Corps of Engineers) in the process is described. Generally, the younger, more affluent and educated migrants fare better in the relocation process than older, poorer and less-educated migrants. Particular attention is paid to those people who found relocation psychologically and economically costly because these are unanticipated and usually unrecorded real costs of reservoir construction. Suggestions are given for easing the burden of relocation among those affected. The framework for this report is longitudinal, describing the relocation process from pre-migration to post-relocation
Discovery of 36 eclipsing EL CVn binaries found by the Palomar Transient Factory
We report the discovery and analysis of 36 new eclipsing EL CVn-type
binaries, consisting of a core helium-composition pre-white dwarf and an
early-type main-sequence companion, more than doubling the known population of
these systems. We have used supervised machine learning methods to search 0.8
million lightcurves from the Palomar Transient Factory, combined with SDSS,
Pan-STARRS and 2MASS colours. The new systems range in orbital periods from
0.46-3.8 d and in apparent brightness from ~14-16 mag in the PTF or
filters. For twelve of the systems, we obtained radial velocity
curves with the Intermediate Dispersion Spectrograph at the Isaac Newton
Telescope. We modelled the lightcurves, radial velocity curves and spectral
energy distributions to determine the system parameters. The radii (0.3-0.7
) and effective temperatures (8000-17000 K) of the
pre-He-WDs are consistent with stellar evolution models, but the masses
(0.12-0.28 ) show more variance than models predicted. This
study shows that using machine learning techniques on large synoptic survey
data is a powerful way to discover substantial samples of binary systems in
short-lived evolutionary stages
Rapid "Turn-on" of type 1 AGN in a quiescent early type galaxy SDSS1115+0544
We present a detailed study of a transient in the center of SDSS1115+0544
based on the extensive UV, optical, mid-IR light curves (LC) and spectra over
1200 days. The host galaxy is a quiescent early type galaxy at = 0.0899
with a blackhole mass of . The transient underwent a 2.5
magnitude brightening over days, reaching a peak -band luminosity
(extinction corrected) of magnitude, then fading 0.5 magnitude over 200
days, settling into a plateau of days. Following the optical brightening
are the significant mid-IR flares at and m, with a peak time
delay of days. The mid-IR LCs are explained as the echo of UV photons
by a dust medium with a radius of cm, consistent with of 0.58 inferred from the spectra. This event is very energetic with an
extinction corrected erg s. Optical
spectra over 400 days in the plateau phase revealed newly formed broad
H emission with a FWHM of km s and narrow
coronal lines such as [Fe VII], [Ne V]. This flare also has a steeply rising UV
continuum, detected by multi-epoch data at to days post
optical peak. The broad Balmer lines and the UV continuum do not show
significant temporal variations. The slow evolving LCs over 1200 days, the
constant Balmer lines and UV continuum at late-times rule out TDE and SN IIn as
the physical model for this event. We propose that this event is a `turn-on'
AGN, transitioning from a quiescent state to a type 1 AGN with a sub-Eddington
accretion rate of /yr. This change occurred on a very short time
scale of days. The discovery of such a rapid `turn-on' AGN
poses challenges to accretion disk theories and may indicate such event is not
extremely rare.Comment: Comments are welcome. Emails to the first author. Accepted for
publication in Ap
Doppler beaming factors for white dwarfs, main sequence stars, and giant stars. Limb-darkening coefficients for 3D (DA and DB) white dwarf models
Context. Systematic theoretical calculations of Doppler beaming factors are scarce in the literature, particularly in the case of white
dwarfs. Additionally, there are no specific calculations for the limb-darkening coefficients of 3D white dwarf models.
Aims. The objective of this research is to provide the astronomical community with Doppler beaming calculations for a wide range of effective temperatures, local gravities, and hydrogen/metal content for white dwarfs as well as stars on both the main sequence and the giant branch. In addition, we present the theoretical calculations of the limb-darkening coefficients for 3D white dwarf models for the first time.
Methods. We computed Doppler beaming factors for DA, DB, and DBA white dwarf models, as well as for main sequence and giant stars covering the transmission curves of the Sloan, UBVRI, HiPERCAM, Kepler, TESS, and Gaia photometric systems. The
calculations of the limb-darkening coefficients for 3D models were carried out using the least-squares method for these photometric
systems.
Results. The input physics of the white dwarf models for which we have computed the Doppler beaming factors are: chemical compositions log [H/He] = −10.0 (DB), −2.0 (DBA), and He/H = 0 (DA), with log g varying between 5.0 and 9.5 and effective temperatures in the range 3750-100 000 K. The beaming factors were also calculated assuming non-local thermodynamic equilibrium (NLTE) for the case of DA white dwarfs with Teff > 40 000 K. For the mixing-length parameters, we adopted ML2/α = 0.8 (DA case) and 1.25 (DB and DBA). The Doppler beaming factors for main sequence and giant stars were computed using the ATLAS9 version, characterized by metallicities ranging from [-2.5, 0.2] solar abundances, with log g varying between 0 and 5.0 and effective temperatures between 3500 and 50 000 K. The adopted microturbulent velocity for these models was 2.0 km s−1. The limb-darkening coefficients were computed for three-dimensional DA and DB white dwarf models calculated with the CO5BOLD radiation-hydrodynamics code. The parameter range covered by the three-dimensional DA models spans log g values between 7.0 and 9.0 and Teff between 6000 and 15000 K, while He/H = 0. The three-dimensional DB models cover a similar parameter range of log g between 7.5 and 9.0 and Teff between 12 000 and 34 000 K, while log H/He = −10.0. We adopted six laws for the computation of the limb-darkening coefficients: linear, quadratic, square root, logarithmic, power-2, and a general one with four coefficients.
Conclusions. The beaming factor calculations, which use realistic models of stellar atmospheres, show that the black body approximation is not accurate, particularly for the filters u, u', U, g, g', and B. The black body approach is only valid for high effective
temperatures and/or long effective wavelengths. Therefore, for more accurate analyses of light curves, we recommend the use of the beaming factors presented in this paper. Concerning limb-darkening, the distribution of specific intensities for 3D models indicates that, in general, these models are less bright toward the limb than their 1D counterparts, which implies steeper profiles. To describe these intensities better, we recommend the use of the four-term law (also for 1D models) given the level of precision that is being achieved with Earth-based instruments and space missions such as Kepler and TESS (and PLATO in the future)
Gravity and limb-darkening coefficients for compact stars : DA, DB, and DBA eclipsing white dwarfs
Context. The distribution of the specific intensity over the stellar disk is an essential tool for modeling the light curves in eclipsing binaries, planetary transits, and stellar diameters through interferometric techniques, line profiles in rotating stars, gravitational microlensing, etc. However, the available theoretical calculations are mostly restricted to stars on the main sequence or the giant branch, and very few calculations are available for compact stars.
Aims. The main objective of the present work is to extend these investigations by computing the gravity and limb-darkening coefficients for white dwarf atmosphere models with hydrogen, helium, or mixed compositions (types DA, DB, and DBA).
Methods. We computed gravity and limb-darkening coefficients for DA, DB, and DBA white dwarfs atmosphere models, covering the transmission curves of the Sloan, UBVRI, Kepler, TESS, and Gaia photometric systems. Specific calculations for the HiPERCAM instrument were also carried out. For all calculations of the limb-darkening coefficients we used the least-squares method. Concerning the effects of tidal and rotational distortions, we also computed for the first time the gravity-darkening coefficients y(λ) for white dwarfs using the same models of stellar atmospheres as in the case of limb-darkening. A more general differential equation was introduced to derive these quantities, including the partial derivative (∂ln Io(λ)/∂ln g)Teff.
Results. Six laws were adopted to describe the specific intensity distribution: linear, quadratic, square root, logarithmic, power-2, and a more general one with four coefficients. The computations are presented for the chemical compositions log[H/He] = −10.0 (DB), −2.0 (DBA) and He/H = 0 (DA), with log g varying between 5.0 and 9.5 and effective temperatures between 3750 and 100 000 K. For effective temperatures higher than 40 000 K, the models were also computed adopting nonlocal thermal equilibirum (DA). The adopted mixing-length parameters are ML2/α = 0.8 (DA case) and 1.25 (DB and DBA). The results are presented in the form of 112 tables. Additional calculations, such as for other photometric systems and/or different values of log[H/He], log g, and Teff can be performed upon request
Readout technologies for directional WIMP Dark Matter detection
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies
Differential pathways to adult metabolic dysfunction following poor nutrition at two critical developmental periods in sheep
Epidemiological and experimental studies suggest early nutrition has long-term effects on susceptibility to obesity, cardiovascular and metabolic diseases. Small and large animal models confirm the influence of different windows of sensitivity, from fetal to early postnatal life, on offspring phenotype. We showed previously that undernutrition in sheep either during the first month of gestation or immediately after weaning induces differential, sex-specific changes in adult metabolic and cardiovascular systems. The current study aims to determine metabolic and molecular changes that underlie differences in lipid and glucose metabolism induced by undernutrition during specific developmental periods in male and female sheep. Ewes received 100% (C) or 50% nutritional requirements (U) from 1–31 days gestation, and 100% thereafter. From weaning (12 weeks) to 25 weeks, offspring were then fed either ad libitum (CC, UC) or were undernourished (CU, UU) to reduce body weight to 85% of their individual target. From 25 weeks, all offspring were fed ad libitum. A cohort of late gestation fetuses were studied after receiving either 40% nutritional requirements (1–31 days gestation) or 50% nutritional requirements (104–127 days gestation). Post-weaning undernutrition increased in vivo insulin sensitivity, insulin receptor and glucose transporter 4 expression in muscle, and lowered hepatic methylation at the delta-like homolog 1/maternally expressed gene 3 imprinted cluster in adult females, but not males. Early gestational undernutrition induced lower hepatic expression of gluconeogenic factors in fetuses and reduced in vivo adipose tissue insulin sensitivity in adulthood. In males, undernutrition in early gestation increased adipose tissue lipid handling mechanisms (lipoprotein lipase, glucocorticoid receptor expression) and hepatic methylation within the imprinted control region of insulin-like growth factor 2 receptor in adulthood. Therefore, undernutrition during development induces changes in mechanisms of lipid and glucose metabolism which differ between tissues and sexes dependent on the period of nutritional restriction. Such changes may increase later life obesity and dyslipidaemia risk
Genetically modified plants are an alternative to oily fish for providing n-3 polyunsaturated fatty acids in the human diet: A summary of the findings of a Biotechnology and Biological Sciences Research Council funded project
The n-3 polyunsaturated fatty acids (PUFA) present primarily in oily fish, namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are important components of cell membranes that are needed for normal development and cell function. Humans have very limited capacity for EPA and DHA synthesis from alinolenic acid and so they must be obtained pre-formed from the diet. However, perceived unpalatability of oily fish and fish oil concerns about contamination with environmental pollutants, dietary choices that exclude fish and animal products, and price limit the effectiveness of recommendations for EPA and DHA intakes. Moreover, marine sources of EPA and DHA are diminishing in the face of increasing demands. Therefore, an alternative source of EPA and DHA is needed that is broadly acceptable, can be upscaled and is sustainable. This review discusses these challenges and, using findings from recent nutritional trials, explains how they may be overcome by seed oils from transgenic plants engineered to produce EPA and DHA. Trials in healthy men and women assessed the acute uptake and appearance in blood over 8 hours of EPA and DHA from transgenic Camelina sativa compared to fish oil, and the incorporation of these PUFA into blood lipids after dietary supplementation. The findings showed that postprandial EPA and DHA incorporation into blood lipids and accumulation in plasma lipids after dietary supplementation was as good as that achieved with fish oil. The oil derived from this transgenic plant was well tolerated. This review also discusses the implications for human nutrition, marine ecology and agriculture
Dietary Supplementation With Seed Oil From Transgenic Camelina sativa Induces Similar Increments in Plasma and Erythrocyte Docosahexaenoic Acid and Eicosapentaenoic Acid to Fish Oil in Healthy Humans
EPA and DHA are required for normal cell function and can also induce health benefits. Oily fish are the main source of EPA and DHA for human consumption. However, food choices and concerns about the sustainability of marine fish stocks limit the effectiveness of dietary recommendations for EPA+DHA intakes. Seed oils from transgenic plants that contain EPA+DHA are a potential alternative source of EPA and DHA. The present study investigated whether dietary supplementation with transgenic Camelina sativa seed oil (CSO) that contained EPA and DHA was as effective as fish oil (FO) in increasing EPA and DHA concentrations when consumed as a dietary supplement in a blinded crossover study. Healthy men and women (n 31; age 53 (20-74) yrs) were randomised to consume 450 mg/day EPA+DHA provided either as either CSO or FO for 8 weeks, followed by 6 weeks washout and then switched to consuming the other test oil. Fasting venous blood samples were collected at the start and end of each supplementation period. Consuming the test oils significantly (P < 0.05) increased EPA and DHA concentrations in plasma triacylglycerol, phosphatidylcholine and cholesteryl esters. There were no significant differences between test oils in the increments of EPA and DHA. There was no significant difference between test oils in the increase in the proportion of erythrocyte EPA+DHA (CSO, 12%; P < 0.0001 and FO, 8%; P = 0.02). Together these findings show that consuming CSO is as effective as FO for increasing EPA and DHA concentrations in humans
- …