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ABSTRACT

We report on the discovery and analysis of 36 new eclipsing EL CVn-type binaries, consisting
of a core helium-composition pre-white dwarf (pre-He-WD) and an early-type main-sequence
companion. This more than doubles the known population of these systems. We have used
supervised machine learning methods to search 0.8 million light curves from the Palomar
Transient Factory (PTF), combined with Sloan Digital Sky Survey (SDSS), Panoramic Sur-
vey Telescope and Rapid Response System (Pan-STARRS) and Two-Micron All-Sky Survey
(2MASS) colours. The new systems range in orbital periods from 0.46 to 3.8d and in ap-
parent brightness from ~14 to 16 mag in the PTF R or g’ filters. For 12 of the systems, we
obtained radial velocity curves with the Intermediate Dispersion Spectrograph at the Isaac
Newton Telescope. We modelled the light curves, radial velocity curves and spectral energy
distributions to determine the system parameters. The radii (0.3-0.7 Rp) and effective tem-
peratures (8000—17 000 K) of the pre-He-WDs are consistent with stellar evolution models,
but the masses (0.12-0.28 M) show more variance than models have predicted. This study
shows that using machine learning techniques on large synoptic survey data is a powerful way
to discover substantial samples of binary systems in short-lived evolutionary stages.
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Rappaport & Fabrycky 2011); KOI-1224 (Breton et al. 2012);

1 INTRODUCTION KIC-9164561, KIC-10727668 (Rappaport et al. 2015); KIC-

EL CVn binaries are eclipsing binaries containing a low-mass
(~0.15-0.33 M) pre-helium white dwarf (pre-He-WD) and an
A/F-type main-sequence (MS) star. The prototype system, EL CVn,
is part of a sample of 17 EL CVn systems (Maxted et al. 2014a)
discovered by the Super Wide Angle Search for Planets (SWASP;
Pollacco et al. 2006) with magnitudes in the range of 9 < V < 13.
All light curves show boxy, shallow eclipses (<0.1 mag depth) with
periods between ~0.5 and ~3 d, and in most cases ellipsoidal vari-
ation due to the deformation of the A/F star. The low radial velocity
amplitudes (~15-30km s~") of the primaries confirm the low-mass
nature of the pre-He-WDs.

A total of 10 EL CVn systems were found in the Kepler survey:
KOI-74 (van Kerkwijk et al. 2010; Bloemen et al. 2012); KOI-81
(van Kerkwijk et al. 2010; Matson et al. 2015); KOI-1375 (Carter,
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4169521, KOI-3818, KIC-2851474 and KIC-9285587 (Faigler et al.
2015). All these systems were studied in great detail, and by mod-
elling the Kepler light curves in combination with radial velocity
curves, all system parameters have been determined. Four of these
systems contain small pre-He-WDs (<0.05R)) and, as a conse-
quence, their light curves feature shallow eclipses only detectable
from space. The fact that 10 EL CVn-like systems are found in the
Kepler field suggests that there should be many more in our Galaxy,
in line with an estimate of the local space density from stellar evo-
lution and population synthesis models, 4-10 x 107° pc=3 (Chen
etal. 2017).

Besides the samples found by Kepler and SWASP, there have been
serendipitous discoveries of binaries related to EL CVn systems.
The star V209 in w Cen is likely an EL CVn binary (Kaluzny
et al. 2007), but the primary does not seem to be a typical main-
sequence star: its mass is 0.95 M but it has a temperature of
9370 K. OGLE-BLG-RRLYR-02792 is an eclipsing binary that
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contains a large pre-He-WD, which seems to be pulsating like an
RR-Lyrae star (Pietrzynski et al. 2012). A possible non-eclipsing
variant of an EL CVn binary is the star Regulus (o Leo). Gies et al.
(2008) and Rappaport, Podsiadlowski & Horev (2009) found that
Regulus A is a single-lined spectroscopic binary with a period of
40d, consisting of an A-type primary and a companion with a mass
of >0.3 M, at the upper end of the pre-He-WD mass range.

EL CVn binaries share many characteristics with a new type
of binary: R CMa-type binaries are Algol binaries with a bloated,
low-mass, donor (e.g. Budding & Butland 2011; Lee et al. 2016).
They are very similar to EL CVn systems, except that they are
semidetached, and therefore considered the progenitors of EL CVn
systems. Two detached R CMa systems have been identified us-
ing Kepler photometry and these are now considered to be newly
born EL CVn binaries: KIC-10661783 (Lehmann et al. 2013) and
KIC-8262223 (Guo et al. 2017).

EL CVn systems are part of a larger family of binaries where
one component of the binary is an extremely low-mass white dwarf
(ELMWD). The majority of ELMWD-containing binaries without
a main-sequence companion have white dwarf or neutron star com-
panions instead (e.g. Marsh, Dhillon & Duck 1995; van Kerkwijk
et al. 2005). In these systems, the ELMWD dominates the lumi-
nosity, making them identifiable with a single spectrum. The ELM
survey (Brown et al. 2010) uses this approach and has been suc-
cessful in finding many ELMWDs in binary white dwarf systems.

In this paper, we present system parameters for 36 new EL CVn
systems, all eclipsing, discovered using the Palomar Transient Fac-
tory (PTF). In Section 2, we describe the identification of the sys-
tems using supervised machine learning classifiers. In Section 3,
we discuss the spectroscopic follow-up of 12 of the new systems.
In Section 4, we discuss the analysis of the light curves, spectra
and spectral energy distributions (SEDs), and we present the results
in Section 5. In Section 6, we compare our results with theoretical
prediction and we compare our sample with already known EL CVn
binaries. We end with a summary and conclusion in Section 7.

2 TARGET SELECTION

2.1 The Palomar Transient Factory

The Palomar Transient Facility (PTF) used the 1.2-m Oschin Tele-
scope at the Palomar Observatory with a mosaic camera consisting
of 11 CCDs. The CCDs have 4 x 2 K pixels and the camera has a
pixel scale of 1.02 arcsec pixel™!, giving it a total field of view of
7.26 deg®. The PTF uses an automated image processing pipeline,
which performs bias and flat-field corrections, source finding and
photometry. All data are automatically processed; see Rau et al.
(2009) and Law et al. (2009) for further information.

2.2 Data

For all objects detected by the PTF, light curves are automatically
generated (see Laher et al. 2014) and light-curve statistics are calcu-
lated. These statistics include, among others, the mean, root mean
square (rms), percentiles and y 2-statistic; see Masci & Bellm (2016)
for a full list. These light-curve statistics are based on the light-curve
features used in Richards et al. (2011, 2012), which are useful to
distinguish different types of variable stars. It is important to note
that we do not use features related to any periodicity in the light
curve. This is for a practical reason; it is very difficult to automat-
ically obtain a reliable period for all the PTF light curves because
they are sparsely sampled and span many years.

EL CVn-type binaries in the PTF 2561

Table 1. The number of objects after our initial selec-
tion with the PTF light curves (>40 epochs, szcduccd > 10,
<16 mag). The percentages for which additional colour in-
formation is available are shown.

Filter No. of objects SDSS NOMAD Pan-STARRS

ugriz JHK grizy
R 532477 43.65%  97.58% 98.92%
g 257918 55.45%  98.69% 99.26%
RNg' 36943 64.39%  96.48% 98.66%

For this study, we used all available light-curve data obtained
between the start of the PTF in 2008 December and 2016 March.
We treat the data for the R and g’ filters as two separate data sets
in the subsequent analysis. These data sets are very substantial:
R, ~250 million objects; g’, ~50 million objects. We make an
initial cut and select only objects that are variable by requiring that
XZauea > 10, that light curves have more than 40 epochs, and that
objects are brighter than 16 mag in either PTF R or PTF g'. This still
leaves more than ~10° candidates (see Table 1 and Fig. 1).

We match the objects in these data sets to the latest Sloan Dig-
ital Sky Survey (SDSS) catalogue Data Release 13 (DR13, ugriz
bands; Albareti et al. 2016), the Naval Observatory Merged Astro-
metric Dataset (NOMAD, JHK bands; Zacharias et al. 2004) and
the Panoramic Survey Telescope and Rapid Response System (Pan-
STARRS) catalogue (grizy bands; Chambers et al. 2016). Table 1
gives an overview of the total number of objects and the colour
availability.

2.3 Machine learning classification

To cut back on the number of candidates for an initial visual light-
curve inspection, we use supervised machine learning classifiers to
make a pre-selection. The idea is that instead of finding EL CVn
binaries by using fixed, pre-defined, user-supplied selection criteria,
a sample of known EL CVn binaries and objects that are not EL
CVn binaries (i.e. a training set) is provided and a machine learning
code (i.e. classifier) decides what is the best way to separate the
two groups given the characteristics (called features; e.g. g — r
colour or the light curve’s rms value). There are many different
types of classifiers, and the behaviour of each classifier can be
adjusted by changing so-called hyperparameters. Setting the correct
hyperparameters is required to avoid overfitting or underfitting of
the data. For an introduction to machine learning in astronomy, see
Ivezic¢ et al. (2014); for a practical guide to machine learning (with
PYTHON), see Andreas C. Miiller (2016).

Because supervised machine learning classifiers can process huge
amounts of data very quickly, they have become a popular tool
to handle the large amount of light curves produced by survey
telescopes. Many different techniques have been tried for light-
curve classification (e.g. Debosscher 2009; Palaversa et al. 2013;
Angeloni et al. 2014; Peters et al. 2015; Mackenzie, Pichara &
Protopapas 2016; Armstrong et al. 2016; Sesar et al. 2017). In recent
years, the Random Forest method (Breiman 2001) has become very
popular as it typically performs the best and is also easy to interpret
(e.g. Richards et al. 2011; Masci et al. 2014).

To find EL CVn binaries, we have experimented with three dif-
ferent supervised machine learning classifiers based on combining
decision trees: the standard Random Forest and an ‘Extra-Trees’
classifier (Geurts, Ernst & Wehenkel 2006), both implemented in the
PYTHON package sKLEARN (Pedregosa et al. 2011), and the more so-
phisticated ‘Gradient boosted decision tree’ classifier, implemented
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Figure 1. All objects in the PTF sample after our initial cut (>40 epochs, szeduced > 10, <16 mag), with red denoting PTF R and green denoting PTF g’. The
EL CVn binaries we discovered in the data are shown as white dots. The black lines show Galactic latitudes of —15°, 0° and 15°.

in xGBoosT (Chen & Guestrin 2016). All three classifiers combine
many randomized decision trees, which are a sequence of binary
decisions.

Here we briefly discuss the differences between the methods.
Both Random Forest and Extra-Trees combine the prediction of
many independent, randomized decision trees. The larger the num-
ber of trees the better, but at the cost of increased computation
time. For both methods, each tree is built using only a subset of all
features (the rule of thumb is the square root of the total number
of features). Random Forest uses the best possible split of the data
given the available features and uses that to separate the different
classes. Extra-Trees differs from Random Forest as it does not use
the best split, but a random split. This extra randomization step has
the consequence that decision boundaries are smoother compared
to Random Forest. Both methods are relatively simple; they have
only a few hyperparameters and are relatively robust against overfit-
ting. XGBOOST also uses many randomized decision trees. However,
instead of combining many independent trees, new trees are cre-
ated to optimally complement the existing trees. This is done by
giving samples that were wrongly classified by the previous trees a
larger weight when building the next tree. The next tree is therefore
more likely to classify these objects correctly. The disadvantage of
this method is that it is more sensitive to overfitting compared to
Random Forest. The xGBoosT implementation has many hyperpa-
rameters, which can be set to counteract this, but it can be difficult
to determine the best values for these parameters. The advantages
of all three methods are that they are insensitive to uninformative
features, do not require scaling of the data and are easy to interpret:
they automatically determine the importance of features.

2.4 EL CVn identification

Because supervised machine learning algorithms require a training
sample, we first need to identify EL CVn binaries in our data. There
are no known EL CVn binaries in the PTF magnitude range, so we

need to find new ones in an old-fashioned way. We do this by se-
lecting a sample of A-type main-sequence stars using SDSS colours
(0.8 < u — gspss < 1.5 and —0.5 < g — rgpss < 0.2) and we re-
quire that Stetson-K > 0.6 (one of the light-curve statistics; see also
Stetson 1996). To limit the sample size and to increase post-facto
confidence in the selected objects, we further require that the light
curve is significantly variable (x> > 40) and with more than 150
epochsinR and 100 in g’. EL CVn binaries are characterized by their
< 0.1 mag, flat-bottomed primary eclipse and slightly shallower sec-
ondary eclipse. Therefore, we carry out a period search using both
Analysis-of-Variance (AoV; Schwarzenberg-Czerny 1989; Devor
2005) and Boxed-Least-Square (BLS; Kovacs, Zucker & Mazeh
2002, vartooLs implementation, Hartman & Bakos 2016) methods
on each of the light curves and we inspect each folded light curve
for these criteria. If in doubt, the candidate was included in the light-
curve modelling (see Section 4.1). If the light-curve fitting showed a
V-shaped, non-total, eclipse, we rejected it from the sample, as these
systems could also be regular MS—MS binaries. In other words, we
require our systems to be totally eclipsing.

Using this method, we found six EL CVn binaries, which we then
used as a training set for a Random Forest classifier, combined with
a sample of 4000 randomly chosen objects (which we confirmed
were not EL CVn binaries). Because the training set is so small, we
do not attempt any parameter optimization, but we use the default
hyperparameters (500 trees, the square root of the total number of
features as the number of features per tree, and no limits on the
tree depth). We applied the classifier to the data (the PTFR and
PTF g’ light-curve statistics combined with SDSS colours) and we
inspected the ~100 best candidates identified by the classifiers. We
added newly found EL CVn candidates to the training sample and
repeated the procedure an additional two times. This resulted in the
discovery of an additional 11 systems, bringing the total to 17.

Because we required that SDSS colours were available, we only
inspected roughly half of the data at this point (see Table 1). There-
fore, we replaced the SDSS colours with the BVRHJK colours from
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Figure 2. The left panel shows the weighted rms of the PTF light curve versus the normalized 95th percentile of the light curve (percentile 95 minus median,
divided by 90 percentile range; see Table Al). The right panel shows 2MASS J-PTF R versus Pan-STARRS g — r colour—colour space. The red dots show all
EL CVn binaries and the black contours show all samples in the PTF R data set, with the black contours containing 25, 50 and 75 per cent of the data. Samples
outside the contours are indicated with black points. The background colour indicates the EL CVn score by the Extra-Trees classifier with grey lines at every
0.1 score interval. The score is calculated by assuming the median values of the EL CVns for all parameters, except the parameters on the x- and y-axes.

the NOMAD catalogue (Pan-STARRS colours were not yet avail- Table 2. Overview of the EL CVn binaries we discovered in
able at this time). We again checked the best 100 candidates in an the PTF data. In the rest of the paper, we use the PTF name.
iterative way, adding the new EL CVn systems to the training sam- The PTF R column lists the median magnitude of the light
ple. The combined SDSS and NOMAD process resulted in a total curve in the R band.

of 30 EL CVn binaries.

With this sample, we trained the three different classifiers PTF name IAU name (PTF1J..) — P(d)  PTFR
(Random Forest, Extra-Trees and xGBoosT) and determined the best PTFS1600y J004040.23+412521.61  1.184  13.7
hyperparameters. We used the PTF variability features combined PTFS1600ad ~ J004300.75+381537.26  1.084  14.7
with the Pan-STARRS colours. The goal of our classifier is not to PTFS1700do  J005424.06+411126.98  3.051  15.7
classify all samples correctly (high precision), but instead to rank PTFS1600aa  J005659.724+130920.66  0.693  15.9

PTFS1601p J011909.91+435907.11  1.222 15.3
PTES1501bh  J012814.724-040551.90  0.620 13.9
PTFS1601q J013336.92+470600.18  1.252 16.2
PTFS1601cl J014839.104-382314.56  0.892 13.6
PTFS1402de  J021913.15+215921.98  0.619 15.0

the candidates according to ‘EL CVn’ likeness. Therefore, we do
not optimize the precision of our classifier, but instead we use the
area-under-curve (AUC) for the receiver operating characteristic
(ROC). We do this using stratified K-fold cross-validation to calcu-

late the ROC-AUC score. For more details on classifier metrics (such PTFS1607aa  JO71207.014211654.98 0.846  15.0
as ROC-AUC) and model optimization, see Ivezi¢ et al. (2014); PTFS1607v J075310.424+-835154.79 0720 153
Andreas C. Miiller (2016). PTFS1607t  J075642.49-+162143.99 0.876  14.2

For both Random Forest and Extra-Trees, we find similar optimal PTFS1607ab  J075950.034+154319.09 0.773  14.0
hyperparameters. Using more than 600 trees does not improve per- PTFS1608ab  J080425.26+070845.24  0.610  14.6
formance significantly. The number of features per tree influences PTES1612al  J121254.274363341.76  0.637 157

PTFS1512bf  J124154.58+-001333.06  0.607 14.2
PTFS1613s J133220.59+4-352847.28  1.142 14.3
PTFS1613u J133929.374455055.64  0.564 15.3
PTES1615ag  J150041.84-191417.23  0.681 14.3

the ROC-AUC score marginally, but there is a clear preference for
only using two features per tree. We checked different hyperparam-
eters that limit the depth or complexity of the tree, but we find that

the RQC—AUC score only decreases when the tree depth or com- PTES1615v 1150327.614460322.78 0559 15.9
plexity is limited using any of the hyperparameters. As an example, PTFS1515ay  J150336.104195842.16 0464  14.8
Fig. 2 shows how the score of the Extra-Trees classifier varies in PTES1615w  J152726.81+120453.54 1441 149
two cross sections of the parameters space. PTFS1615a0  J152758.90+190751.63  0.895  15.0

For xGBoosT there are more hyperparameters to tune. We start by PTFS1615u J153005.014+-202157.06  0.778  15.8
optimizing the most important three (i.e. the number of estimators, PTFS1616cr  J162342.134+231456.58  0.565  14.0
the learning rate and the tree depth) while setting the other param- PTES1617n  J173257.98+403600.93 2337 153

PTES1617m  J175433.50+230041.83  3.773 14.7
PTFS16191 J191826.08+485302.94  1.160 13.7
PTES1521ct  J213318.98+254126.30 1.172 15.8
PTFS1621ax  J213534.11+233313.86 1.018 15.0
PTES1521cm  J214858.33+030417.50  0.685 15.1

eters to typical values. After finding the optimal combination of

these hyperparameters, we continue to optimize the minimum child

weight, subsampling fraction and the column subsample fraction.
After training all classifiers, we selected the top 1000 candidates

.(m both R an.d gf data sets) from the three claS.S}ﬁers apd visually PTES1622by  J220719.56+-085415.66 0749  15.8
inspected their light curves. We found an additional six EL CVn PTES1522¢cc  J225539.414342137.72 0572 147
binaries, bringing the final number to 36 systems, as listed in Table 2. PTES1622aa  J225652.534+390822.70 0.766  15.6

A quick comparison between the classifiers shows that both the PTFS1622bt  J225755.644+310133.67 0.688  15.1
Extra-Trees classifier and the xGBoost classifier perform equally PTFS1723aj  J231010.08+331249.78  1.109  14.8

well while the Random Forest performs slightly worse. This is
confirmed by the ranking of the last six discovered EL CVn
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binaries that were all further down the list for the Random Forest
method. Although the performances of Extra-Trees and XGBOOST are
comparable, tuning the xGBoosT classifier took significantly more
time and effort. Because of the combination of yield versus invest-
ment, we deem the Extra-Trees classifier to be best (in this particular
case).

The PTF observed the Kepler field and has thus observed the EL
CVn binaries found by Kepler. None of these binaries was recovered
by our search and we investigated the reason why. First of all, most
Kepler systems feature eclipses much shallower than the PTF can
detect. The Kepler EL. CVn systems with deep enough eclipses to
be detected by the PTF were not recovered because either the star
was saturated in the PTF data, or the object was not observed at a
sufficient number of epochs.

3 SPECTROSCOPY

For 19 of our EL CVn systems, we obtained phase-resolved spec-
troscopy with the Isaac Newton Telescope (INT). We used the In-
termediate Dispersion Spectrograph (IDS) with the R632V grat-
ing (0.90 A pixel~', 3800-5800 A) for eight bright nights and the
R900V grating for nine bright nights on three separate runs (0.63 A
pixel ™!, 4000-5500 A). Conditions were good with seeing of
< larcsec, except for the last four nights. During these nights,
the seeing was 2-5 arcsec and two nights were mostly clouded.
An overview of the spectroscopic runs, the set-up and the weather
quality is given in Table A2.

Because the orbital period and phase for all systems is determined
very precisely from the photometry (see Section 5), we timed the ob-
servations such that we observed the systems around orbital phases
0.25 and 0.75. The signal-to-noise per pixel of each spectrum ranges
between 40 and 80, sufficient to detect the weaker metal lines in
the A/F star’s spectrum. Spectra were taken in pairs, and before or
after each stellar spectrum a calibration lamp spectrum (CuAr) was
obtained to make sure the wavelength calibration was stable.

The data were reduced using IRAF. We used L.A.cosMIC (van
Dokkum 2001) to remove cosmic rays and we performed stan-
dard bias and flat calibrations. For the wavelength calibration, we
used ~40 arc lines, which resulted in a typical rms uncertainty on
the wavelength solution of <0.1 pixels (4—6kms™").

4 METHODS AND ANALYSIS

4.1 Light curves

By modelling the light curves, we put strong constraints on the
system parameters. To construct a model light curve given a set
of binary star parameters, we use LCURVE (by T. R. Marsh and
collaborators; see Copperwheat et al. 2010 and also Copperwheat
etal. 2011 and Parsons et al. 2011). The LcurvE code uses grids of
points to model the two stars. The shape of the stars in the binary
is set by a Roche potential. We assume that the orbit is circular
and that the rotation periods of the stars are synchronized to the
orbital period. We discuss the validity of the latter assumption in
Section 6.1. We calculate the light curves by assuming the effective
wavelength of the PTF filters: 4641 A for the g’ filter and 6516 A
for the R filter. In this section (and in the rest of the paper), we refer
to the A/F-type main sequence as the primary (subscript ‘1°) and
the pre-He-WD as the secondary (subscript 2°).

The free parameters of the model are the orbital period (P) and
mid-eclipse time (), both in BMJDrpg (the barycentric Julian
date in the terrestrial dynamic time frame, minus 2400000.5), the

effective temperatures of both stars (77, ,), the scaled radii of both
stars (r;, 2 = R} »/a, where a is the binary separation), the inclination
angle (i), the mass ratio (¢ = M,/M,), an albedo (absorption) for
both stars, a linear limb darkening coefficient (x; ,) and a gravity
darkening coefficient (y, ») in the relation / o< g (where g is the
local surface gravity; von Zeipel 1924). Not all these parameters are
well constrained by the data and therefore we fix or set an allowed
range for some parameters. We constrain the temperature of the
primary star (77) to 6500-10 000 K, which is the temperature range
of A/F-type main-sequence stars. This is necessary because with
only a light curve the temperature ratio is well constrained, but the
absolute values of the temperatures of each star are not. We do
not use the resulting temperatures of the light-curve fit, but instead
determine the effective temperatures of both stars by modelling the
SED (see Section 4.2). We fix the limb darkening coefficient of star
2 (x2) to 0.5, as the effect on the light curve is minimal. We allow
the limb darkening coefficient of the A/F star (x;) to vary between
0.08 and 1.05, which are the lowest and highest values for stars in
the allowed temperature range (Gianninas et al. 2013).

To determine the uncertainty on the parameters, we use the
Markov chain Monte Carlo (MCMC) method as implemented by
EMCEE (Foreman-Mackey et al. 2013). The standard method to deter-
mine the uncertainties on the parameters is to use the least-squares
(x?) statistic. However, this assumes that the uncertainty estimates
of the data are correct and Gaussian distributed. This is not the
case for the PTF light curves (as in many observational data sets).
Ignoring this problem leads to an underestimate of the uncertainties
in the derived parameters, and can in some cases also change the
solution. To solve this problem, we add additional white noise' to
our model; see section 8 in Hogg, Bovy & Lang (2010) and see
Foreman-Mackey (2013) for a simple example. This means that our
model has the white noise amplitude as an extra parameter, which
we can simply optimize over, exactly the same as for the light-curve
parameters.

This method requires the following modification to the standard
least-squares function:

_ 2
¥ =30 BB o o + £ m (Y] M)

n

Here, y, is the data, m, is the light-curve model as a function of the
light-curve parameters p, o, are the uncertainties and fis a factor that
adds an extra noise source. Note that the first term of the equation
is almost the same as in a regular least-squares (x?) regression,
except for the additional noise term, f>m,(p)>. The first term can
be minimized by letting f go to infinity, instead of minimizing the
difference between the data and the model, y, — m, (p). Therefore,
the second term is needed to penalize models with a large value of
f. Using this equation, the optimal amount of white noise is added
to account for any difference between the data and the model. To
obtain the best model, we simply minimize %> over the light-curve
parameters p and the parameter f, just like regular least-squares
regression.

For each of the systems, we first find the approximate solution
using a simple simplex minimizer of the modified least-squares
function. We then use EMCEE to find the best set of parameters
of all the available light curves for that system. For each filter,

UIf the noise cannot be treated as white noise, but the noise is correlated
(red noise), Gaussian process regression can be used. For a simple example,
see Foreman-Mackey (2014) and an example of this method used to model
flickering in a cataclysmic variable by McAllister et al. (2017).
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we use different values for x;, y; and ‘absorb’, while the rest of
the parameters are filter independent. We use 256 parallel MCMC
chains (called ‘walkers’) and we use at least 2000 generations or
more if needed. Any further calculations are done using the last
2560 positions of the walkers.

4.2 Effective temperature

To determine the temperatures of both components, we fit the
SED of the target with model spectra, similar to Maxted et al.
(2011). We use data from the Galaxy Evolution Explorer (GALEX;
far-ultraviolet and near-ultraviolet; Bianchi, Conti & Shiao 2014),
SDSS DRI13 (ugriz; Albareti et al. 2016), Pan-STARRS (grizy;
Chambers et al. 2016), 2MASS (HJK; Skrutskie et al. 2006) and
the Wide-field Infrared Survey Explorer (WISE; W1 and W2; Wright
etal.2010) for each target (where available). We used as model spec-
tra the BaSeL.3.1 spectral library (Westera et al. 2002). To calculate
the flux per band, we convolve the model spectra with each band’s
response curve.

The overall spectrum is the sum of two model spectra of a given
temperature and metallicity, created using bilinear interpolation
from the BaSeL library. With only an SED, it is not possible to
measure the metallicity of the stars reliably. However, as metallic-
ity and temperature are correlated, we treat the metallicity of both
stars as free parameters and marginalize over them in the final result.
For the surface gravity, we assume log g = 4 for the A/F star and
logg = 5 for the pre-He-WD. We set the relative contribution to
the total light by the ratio between r| and r, obtained from the light
curve. At first, we also used the temperature ratio obtained from the
light curve, but we learnt that this gave inconsistent predictions for
the eclipse depths. This is likely as a result of the use of blackbody
spectra by LCURVE. Instead, we directly use the eclipse depth of the
primary eclipse instead of the temperature ratio. The final variable is
the extinction, set by E(B — V). To calculate the reddening following
from the extinction, we used the reddening law by Cardelli, Clayton
& Mathis (1989) with Ry = 3.1 (as implemented by PYSYNPHOT).

To determine the temperatures of both stars we minimized the
function

I )
X‘Z;ﬁ+ﬂm@ﬂ
+ prior[r; /r2, E(B — V)], @

+1log [0, + f*m,(p)’]

where y is the data, m is the model and fis an additional noise factor.
We used a value for E(B — V) according to Schlafly & Finkbeiner
(2011), with an uncertainty of 0.034 (as in Maxted et al. 2011).
For some added flexibility in our model, we added an extra term of
uncertainty to the magnitudes (f), similar to the way it was applied
in equation (1). We again use EMCEE to determine the best values
and uncertainties, as in Section 4.1.

4.3 Radial velocity

To obtain the radial velocity curve of the primary star, we cannot
use the Balmer absorption lines in the spectrum because these are
present both in the A/F star and the pre-He-WD. Using these would
not yield reliable results. Instead, we use the metal lines present in
the spectra of the A/F-type stars. We cross-correlate the spectra with
a template: a high-resolution spectrum of the A5 star HD 145689
(Bagnulo et al. 2003). We first interpolate the target spectrum to
the (much higher) sampling of HD 145689. We then remove the
continuum with a low-order polynomial and determine the radial

EL CVn-type binaries in the PTF 2565

velocity shift using cross-correlation. To estimate the uncertainty
on the radial velocity shift, we add random Gaussian noise to the
target spectra according to the uncertainty per pixel and measure
the radial velocity shift. We repeat this process 11 times and use
the standard deviation of the results as the uncertainty. We use the
metal lines in the ranges 4150—4301, 4411-4791 and 4941-5400 A
to obtain three separate measurements of the radial velocity shift.
The radial velocity measurements are corrected to the heliocentric
velocity frame with the RVCORRECT task in IRAF.

To determine the radial velocity amplitude, we fit a sinusoidal
curve with a fixed value for the period and phase to the measure-
ments. This leaves only the amplitude and systemic velocity as free
parameters. We again use a modified least-squares objective func-
tion, which can also take into account underestimated uncertainties
(similar to equation 1):

_ 2
=3 Pt g (0} 4 7). G)

n

Here, y, are the radial velocity measurements, ¢ is the statistical
uncertainty on the cross-correlation results and fis the extra white
noise. Fitting the data shows (Table 3) that f ranges between 7 and
12kms™', a factor of 2 higher than the statistical noise o. This
extra noise is partially a result of the uncertainties in the wave-
length calibration (4—6 km s~!) but does not account for all residual
variance. This means either that we underestimate the uncertainties
in the cross-correlation procedure (e.g. by the normalization of the
spectra) or that we underestimate the uncertainties in the calibration
process of the spectra. This could be a result of the instabilities of
the optical elements in the IDS/INT combination, which typically
changes for each observing run. As we combine data from four dif-
ferent observing runs, this could result in minor differences in the
set-up. A potential method to verify this is to check the wavelength
of sky emission lines, but these are not available in the spectral
range we use.

4.4 Galactic kinematics

For the 12 systems for which we have obtained a radial velocity
measurement, we calculate their Galactic location and velocity. We
determine the distance to the systems by using the K-band magni-
tude and absolute radius, combined with the K-band surface bright-
ness calibration by Kervella & Fouqué (2008). The proper motions
of the systems are taken either from the USNO CCD Astrograph
Catalog Release 5 (UCACS; Zacharias et al. 2017) or from the
Initial Gaia Source List (Smart & Nicastro 2013). Combined with
right ascension and declination, we calculate velocity in the direc-
tion of the Galactic Centre (V) and the Galactic rotation direction
(V), the Galactic orbital eccentricity (e) and the angular momentum
in the Galactic z-direction (J;). The Galactic radial velocity V, is
negative towards the Galactic Centre, while stars that are revolving
on retrograde orbits around the Galactic Centre have negative V.
Stars on retrograde orbits have positive J,. Thin disc stars generally
have very low eccentricities e. Population membership can be de-
rived from the position in the V,—V,, diagram and the J,—e diagram
(Pauli et al. 2000).

4.5 Masses and radii

To fully solve for the elements of the binary system, we need to
combine the information from the light-curve fit with an additional
piece of information to set the scale of the system. This is typically
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Figure 3. V-V, (left) and e—J; (right) diagrams. The solid and dotted ellipses render the 3o thin and thick disc contours in the V43—V, diagram, while the
solid box in the e—/; marks the thick disc region as specified by Pauli et al. (2006).

Table 3. Radial velocity amplitude of the A/F star, the systemic velocity, the residual variance of the fit, the derived distance, the
measured proper motions and the associated stellar population for the 12 EL CVn systems with radial velocity curves.

ID K y f Distance e COS(8) s Pop.
(kms™1) (kms~1) (kms~1) (pc) (mas yr’l) (mas yr’l)

PTFS1600y 22.8 £ 0.9 —88.7 £ 0.9 6.9 2340 £ 70 —7.3 £ 2.0¢ —42 + 1.3¢ Thin
PTFS1600ad 29.7 + 1.4 —233 + 1.2 7.2 3770 + 180 1.1 £ 1.5¢ —1.8 + 1.5¢ Thin
PTFS1601p 18.4 £+ 2.1 —459 + 1.8 124 4960 £+ 500 14 £+ 4.6° —7.6 + 4.2¢ Thin/thick
PTFS1501bh 240 + 1.5 16.6 £ 1.2 8.2 1280 £ 70 10.1 £ 1.5¢ —49 + 1.5¢ Thin
PTFS1601cl 352 + 2.1 —144 + 1.2 9.1 2890 £ 90 2.0 £ 1.3¢ 2.2 £+ 1.3¢ Thin
PTFS1607t 26.7 + 1.7 31.0 £ 1.2 5.5 2160 £+ 70 —2.1 £ 0.3¢ 1.6 £ 1.6¢ Thin
PTFS1607ab 327 £ 1.3 —37.6 + 1.1 6.3 1810 £ 70 —3.1 + 26" —82 + 3.1° Thin
PTFS1512bf 314 £ 1.9 703 + 1.5 11.8 1820 £ 50 —19.2 + 6.4 4.7 + 5.7¢ Thick
PTFS1617n 177 £ 1.7 —198.7 £ 1.9 7.2 5700 £ 380 —1.8 + 2.6¢ —29 +2.7¢ Thick/halo
PTFS1617m 13.1 £ 2.4 —404 + 2.1 10.9 4060 £ 180 —-09 £+ 1.5¢ —92 + 1.7¢ Thin/thick
PTFS16191 227 + 1.3 —125 + 1.0 5.8 2040 + 140 —1.9 £+ 1.6¢ —2.0 + 1.6¢ Thin
PTFS1521cm 347 + 2.0 —65+19 7.9 2870 £+ 110 9.6 + 2.8¢ —7.8 £ 2.7¢ Thick

“The proper motion is taken from the UCACS catalogue (Zacharias, Finch & Frouard 2017).
bThe proper motion is taken from the Initial Gaia Source List (Smart & Nicastro 2013).

done by measuring the radial velocity amplitude of both stars. We
only have the radial velocity amplitude of one of the stars in the
binary. In principle, we can combine this with the mass ratio g,
but the uncertainties on the mass ratio derived from the light-curve
fitting are high and the uncertainties on the masses scale with a
high power of g (for low ¢, M| o« K}q~® and M,  K}q~?), and
therefore they are not constraining.

To circumvent this problem, we make use of the assumption
that the primary star is a main-sequence star. Using only the light-
curve parameters, we can calculate the average density of the main-
sequence component:

3n

)= Gt

“

To propagate the uncertainties correctly, we calculate the stellar
density for each point in the MCMC chain and we assign a random
temperature according to our measurement of the SED. With the
average density and temperature of the main-sequence star, we can
use stellar models to determine its mass. We use the Yale-Potsdam
stellar models (Spada et al. 2017) and follow the same procedure as
in Breton et al. (2012) to make a continuous mapping of the mass in
T—(p) space. We convolve each track with a Gaussian probability
function with a standard deviation of 200 K in temperature and 0.1

dex in density. For each point in the temperature—density grid, we
assign the mass with the highest probability. We use this mapping
to calculate the primary mass for the posterior distribution of the
light-curve fits (see Section 4.1). As can be seen in Fig. 4, most
but not all measurements agree with the models. Two systems,
PTFS1612al and PTFS1615u, have slightly higher densities than
would be the case for a solar metallicity composition for zero-age
main-sequence models. For these two systems, we extrapolate the
models to determine the mass.

With the mass of the primary (M) combined with ¢, i and P, we
calculate the semimajor axis (a) using Kepler’s law:

3 27\ 2
a=GM(1+q) ) %)

Note that in both equations the mass ratio is present in the form of
1 + g, and because the mass ratio is small (¢ ~ 0.1), the high uncer-
tainty on ¢ only mildly affects the accuracy on a and M;. However,
the uncertainty on the pre-He-WD mass (M, = gM, ) is proportional
to the uncertainty on g, which means that the uncertainty on M, is
too high to be constraining.

This can be solved by including the measured radial velocity
(K1) in our calculation, which is available for 12 systems. We use
an iterative approach to find the optimal solution as in Rappaport
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Figure 4. The temperature versus the average density of the main-sequence
stars of the binary system, indicated with a black or white dot. The black
lines show main-sequence evolution tracks (solar metallicity) from Spada
et al. (2017) between 1.0 and 2.5 Mg with 0.1 Mo intervals. The colour
map shows the mass of the star according to the interpolation method by
Breton et al. (2012). The dashed lines are isochrones of 0, 0.1, 0.2, 0.5, 1
and 2 Gyr since the start of the main sequence.

et al. (2015), again for each sample from the light-curve fit poste-
rior distribution. This involves calculating M|, ¢ and (p) until the
solution converges, which it does after two iterations.

5 RESULTS

For the 36 EL CVn binaries in the PTF data, we fit the light curves
with a binary star model (see Fig. A1 and Table A4 in the Appendix).
The best model fits to the light curves all show a flat-bottomed
primary eclipse and a round-bottom secondary eclipse. The orbital
period of the binary, the radii of both stars and the orbital inclination
are typically well constrained, but the uncertainty on the mass ratios
of the systems is typically = 10 per cent. The extra noise term in the
fit for the light curves is typically <1 per cent. This is consistent with
the expected uncertainty in the absolute photometric calibration,
which is not part of the error bars of the light curves. The orbital
periods of the binaries range from 0.46 to 3.8 d, with inclinations
between 74° and 90°. The radii of the primary stars divided by
the semimajor axis (r) are typically 0.2-0.5, and the primary stars
fill about 0.4-0.9 of their Roche lobe. The average density derived
from the light curve is typically between 10 and 70 per cent of Solar
density, consistent with A/F-type main-sequence stars. The mass
ratios, as determined from the light curves, are typically between
0.08 and 0.2, but there are outliers to larger ratios. However, the
uncertainties on the outliers are high. The mass ratio is determined
from the amplitude of the inter-eclipse variability, which is in some
cases not significant (e.g. 1700do) and explains the high uncertainty
on the value for the mass ratio in some cases. From the light curve,
we determined the temperature ratio of the two stars, assuming
blackbody SEDs of typically 0.5-0.95.

The results of the SED fitting are shown in Table 4 and Fig. A2.
The temperatures of the A/F stars in the EL CVn systems range
between 6600 and 10 000 K, consistent with temperatures for A/F-
type main-sequence stars (F-type, 6000-7350K; A-type, 7350-
10000 K; Pecaut & Mamajek 2013). The temperatures of the pre-
He-WDs range from 7900 to 17 000 K. In all systems, the pre-He-
WDs are hotter than the A/F star companion. The uncertainty on
the A/F star’s temperature is typically 100-200 K. The temperature
of the pre-He-WD is less well constrained (100-1400 K), because
it depends on the availability of ultraviolet data and on how accu-
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rately the eclipse depth can be measured from the light curves. The
rms scatter between the data and model is typically <5 per cent,
with a few outliers to 10 per cent (see Table A3). This residual scat-
ter might be the result not only of calibration differences between
telescopes, but also of observations being taken at a random phase.
An observation taken in-eclipse results in a ~10 per cent lower flux
than out-of-eclipse.

For 12 of the EL CVn systems, we obtain usable radial velocity
curves and measure the radial velocity amplitude (see Fig. A3). For
the remaining seven systems, there were not enough measurements
obtained or these were observed at unfavourable orbital phases,
precluding an accurate radial velocity measurement. However, all
radial velocity amplitudes are low, in the range of 20-40kms™"'.
This confirms that the secondary stars in these binaries are indeed
low-mass stars.

Using all information available, we determine the stellar parame-
ters of the stars in the EL CVn systems, summarized in Table 4. The
masses of the A/F-type stars range between 1.3 and 2.4 M. The
radii of these stars (1.15-2.7R¢)) are consistent with these stars
being regular main-sequence stars.

The radii of the pre-He-WDs range between 0.17 and 0.65R¢.
To calculate the mass of the pre-He-WD (M,), we include the mea-
sured radial velocity amplitude if available, which ‘replaces’ the
uncertain mass-ratio measurement from the light curve. For most
of the systems, we do not have a radial velocity amplitude mea-
surement, so we do depend on the mass ratio to determine the mass
of the pre-He-WDs, which range between 0.12 and 0.5Mg. As
discussed in Sections 4.1 and 4.5, the mass determination of the
secondary using only the mass ratio is very uncertain because of
the high uncertainty on the mass ratio. If we limit ourselves only
to systems for which we have a radial velocity amplitude, the mass
range is 0.12-0.28 M5, which is significantly smaller.

For the sample for which we have radial velocity curves, we de-
termine the motion in the Galactic plane and derive their population
membership as described in Section 4.4 and shown in Table 3. Fig. 3
shows that more than half of the systems are part of the thin disc
population. A few are part of the thick disc, and PTFS1617n could
also be a halo object.

6 DISCUSSION

6.1 Co-rotation

In the light-curve modelling (Section 4.1), we assume that both
stars are synchronized with the orbit. Previous studies of EL CVn
binaries have made the same assumption, but all authors acknowl-
edge that it might not be correct, as mass accretion can spin up the
A/F star significantly (see Section 6.2). van Kerkwijk et al. (2010)
extensively discuss how all parameter estimates are affected by in-
correctly assuming co-rotation. Because the precision of PTF light
curves is far lower than the precision of the Kepler light curves,
the only significant effect that this assumption has in our analysis
is on the estimate of the mass ratio. If a star is rotating faster than
the orbital period, the mass ratio (g) is overestimated. We quantify
this by simulating a typical EL CVn light curve with a primary
star that is rotating two and four times faster than the orbital pe-
riod, while keeping all other parameters the same. Fitting these
light curves with the model assuming co-rotation results in values
for g of 0.02 and 0.10 higher than the initial value of ¢ = 0.17.
All other light-curve parameters do not change significantly. There-
fore, we conclude that for mildly faster-than-synchronous rotating
primary stars (Pyo/Porn, > 0.5), the effect on the mass ratio is similar
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Table4. System parameters of all EL CVn systems and the uncertainty (standard deviation) on the parameters. Systems for which a radial velocity measurement
is used to calculate the parameters are indicated with the ‘RV’ superscript. This mainly affects the reliability and systematics on the mass and surface gravity
of the pre-He-WD (M and log g2).

Name Pd) i) MMg) MMy  RRe)  RR K K  lgg  logg
1600yRV 1.1838920 84.5 1.62 0.17 2.41 0.46 6930 8900 3.88 4.33
0.0000008 2.7 0.04 0.01 0.07 0.02 100 110 0.02 0.03
1600adR®Y 1.0840448 86.5 1.76 0.23 1.83 0.35 8050 10490 4.16 4.72
0.0000010 2.2 0.04 0.01 0.05 0.02 120 200 0.02 0.04
1700do 3.0507582 87.4 2.40 0.81 2.34 0.33 9890 17100 4.08 5.31
0.0000278 1.8 0.06 0.25 0.13 0.03 90 1400 0.04 0.15
1600aa 0.6934558 78.7 1.67 0.50 1.67 0.55 7880 9300 4.21 4.67
0.0000006 0.9 0.05 0.09 0.04 0.02 190 400 0.02 0.09
1601pRV 1.2215885 83.8 1.82 0.14 1.65 0.34 8600 11700 4.26 4.54
0.0000051 32 0.06 0.02 0.14 0.04 160 500 0.06 0.10
1501bhRY 0.6204144 78.4 1.30 0.12 1.23 0.20 6870 11100 4.38 491
0.0000005 1.9 0.04 0.01 0.07 0.01 110 400 0.04 0.06
1601q 1.2515058 80.5 1.85 0.30 1.93 0.46 8300 10700 4.13 4.58
0.0000051 2.9 0.08 0.18 0.15 0.04 200 700 0.05 0.40
1601cIRY 0.8917354 82.9 2.02 0.28 2.44 0.52 8290 10100 3.97 4.45
0.0000005 2.9 0.06 0.01 0.07 0.02 200 300 0.02 0.03
1402de 0.6189694 87.0 1.61 0.36 1.56 0.45 7860 9300 4.27 4.69
0.0000011 2.5 0.04 0.13 0.07 0.02 150 300 0.03 0.23
1607aa 0.8463120 84.6 1.85 0.30 1.81 0.38 8470 10300 4.19 4.76
0.0000016 34 0.05 0.07 0.08 0.02 160 300 0.03 0.13
1607v 0.7198356 82.6 1.58 0.20 1.83 0.16 7260 10900 4.11 5.32
0.0000020 58 0.06 0.05 0.16 0.03 120 500 0.06 0.24
1607tRY 0.8759507 76.6 1.40 0.16 1.87 0.38 6600 8600 4.04 4.48
0.0000004 1.0 0.05 0.01 0.05 0.01 140 200 0.02 0.03
1607abRY 0.7730986 83.8 1.40 0.19 1.45 0.32 6980 8810 4.26 4.71
0.0000002 2.3 0.03 0.01 0.05 0.01 100 80 0.03 0.04
1608ab 0.6101718 86.8 1.50 0.11 1.39 0.52 7400 7900 4.32 4.04
0.0000014 1.9 0.06 0.10 0.04 0.02 200 400 0.02 0.24
1612al 0.6369260 86.8 1.38 0.16 1.16 0.37 7280 10300 4.45 4.50
0.0000006 2.0 0.08 0.09 0.05 0.02 110 300 0.03 0.22
1512bfRY 0.6074343 87.2 1.39 0.17 1.53 0.32 6910 9740 4.21 4.65
0.0000002 1.9 0.02 0.01 0.02 0.01 90 180 0.01 0.04
1613s 1.1420695 76.2 1.83 0.17 2.72 0.25 7350 13700 3.83 4.88
0.0000024 6.0 0.08 0.05 0.30 0.05 140 800 0.08 0.28
1613u 0.5644902 81.6 1.52 0.27 1.65 0.37 7340 9690 4.19 4.73
0.0000003 2.7 0.02 0.04 0.04 0.01 70 160 0.02 0.08
1615ag 0.6806897 85.7 1.52 0.27 1.63 0.32 7370 10200 4.20 4.87
0.0000046 33 0.05 0.07 0.05 0.02 200 400 0.02 0.13
1615v 0.5594054 73.7 1.39 0.13 1.50 0.33 6920 9400 4.23 4.54
0.0000003 1.4 0.03 0.03 0.04 0.01 120 300 0.02 0.17
1515ay 0.4642873 89.0 1.33 0.15 1.30 0.46 6800 7930 4.33 4.27
0.0000001 1.1 0.03 0.04 0.02 0.01 100 150 0.01 0.10
1615w 1.4407151 77.7 1.61 0.24 2.59 0.40 6690 10300 3.82 4.63
0.0000024 2.7 0.05 0.05 0.14 0.03 110 200 0.04 0.14
1615a0 0.8954515 77.6 1.64 0.41 1.82 0.64 7580 8700 4.13 4.43
0.0000007 0.8 0.05 0.12 0.05 0.03 170 160 0.02 0.15
1615u 0.7777349 82.4 1.50 0.24 1.27 0.16 7400 12200 4.40 541
0.0000011 4.2 0.09 0.10 0.14 0.02 200 600 0.08 0.27
1616¢cr 0.5649690 82.5 1.40 0.07 1.36 0.46 7060 8000 4.32 3.93
0.0000002 0.9 0.03 0.02 0.02 0.01 120 170 0.01 0.07
1617nRY 2.3367776 87.3 1.80 0.18 2.41 0.38 7500 11600 3.93 4.55
0.0000052 2.1 0.04 0.02 0.12 0.03 110 400 0.04 0.07
1617mRY 3.7728999 87.8 1.68 0.14 2.57 0.69 6990 9320 3.84 3.89
0.0000083 1.5 0.06 0.03 0.08 0.03 190 190 0.02 0.10
16191RY 1.1599993 83.2 1.56 0.17 2.13 0.34 6870 9200 3.97 4.60
0.0000017 4.1 0.05 0.01 0.14 0.04 120 150 0.05 0.09
1521ct 1.1724964 83.0 1.82 0.36 1.72 0.56 8520 9800 4.23 4.50
0.0000014 1.4 0.06 0.29 0.11 0.04 190 300 0.04 0.28
1621ax 1.0181522 84.0 1.69 0.30 2.14 0.17 7350 11800 4.00 5.48
0.0000045 4.6 0.06 0.07 0.14 0.03 170 700 0.04 0.22
1521cmRY 0.6854774 80.0 1.49 0.21 1.49 0.43 7290 9240 4.27 4.49
0.0000002 1.0 0.02 0.01 0.03 0.01 70 90 0.02 0.03
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Table 4 — continued
Name P(d) i) MiMg)  Mx(Mg) RIRp)  RRE) 71 (K) T,(K)  logg log g2
1622by 0.7486683 85.8 1.69 031 1.84 033 7700 11100 4.13 4.88
0.0000016 3.4 0.07 0.07 0.07 0.02 300 1400 0.03 0.13
1522cc 05717853 81.2 1.40 0.26 1.62 0.27 6860 9570 4.17 4.99
0.0000003 3.1 0.04 0.04 0.05 0.01 120 190 0.02 0.08
1622aa 07661291 84.7 1.60 0.16 1.74 0.26 7500 10900 4.16 485
0.0000038 4.0 0.08 0.05 0.10 0.03 300 1300 0.04 0.19
1622bt 0.6884160 79.2 1.65 0.29 1.74 0.29 7700 12200 4.18 4.97
0.0000004 2.0 0.06 0.04 0.05 0.01 200 1000 0.02 0.08
17234j 1.1088064 85.6 1.57 0.18 251 0.23 6640 11000 3.84 4.98
0.0000009 33 0.05 0.03 0.07 0.02 130 400 0.02 0.11

or smaller than the statistical uncertainty on the mass ratio. If the
primary star is rotating faster, then the mass ratio is overestimated.

This overestimate propagates through to the rest of our parameter
estimates: the average density of the primary is overestimated, and
therefore the mass of the primary is underestimated (Fig. 4) and
the semimajor axis is overestimated. However, the effect is small
as these parameters only weakly depend on the mass ratio (see
equations 4 and 5). For a large part of our sample, we do not have
any radial velocity amplitudes, and for these systems we rely on the
mass ratio to calculate the mass of the pre-He-WD. As mentioned in
Section 4.5, the mass of the pre-He-WD depends on the mass ratio
to the third power. Combined with a high statistical and systematic
uncertainty on the mass ratio, this makes the calculations of M,
(without a radial velocity amplitude) unreliable.

To check if the A/F stars are rotating faster than synchronous, we
compare the rotation periods to the orbital period for stars in known
EL CVn systems. The orbital period of the main-sequence star
has been determined for five Kepler EL CVn binaries by measur-
ing the projected rotational velocity (vsini): 1.79(60) d, 0.79(14) d,
5.0(2.4)d and 1.71(62) d (Faigler et al. 2015) and 0.93 d (Lehmann
et al. 2013). In addition, the rotational period has tentatively been
identified from a frequency analysis for KOI-81 (0.48 d; Matson
et al. 2015), KOI-74 (0.59d; Bloemen et al. 2012), KOI-1224
(3.49d; Breton et al. 2012) and KIC-8262223 (0.62d; Guo et al.
2017). All rotational periods are of the same order as the orbital
period. A detailed comparison of the rotational and orbital periods
shows that most stars rotate faster than synchronous, but in one
case the rotation period is longer than the orbital period. For three
cases (all from Faigler et al. 2015) the rotation period is consistent
with the orbital period of the binary, but because the uncertainties
on the rotational periods are large, it is difficult to say if they are
synchronized. Thus, the data indicate that at least some (or maybe
most) of the A/F stars are not synchronized with the orbital period.

However, there is an important difference between the PTF sam-
ple and the sample of EL CVn systems with known rotation periods
of the primary (all found by Kepler). The relative size of the A/F star
(r1) is afactor of ~3 larger in the PTF sample, which strongly affects
the synchronization time-scale of the star (o r; °; Zahn 1977). We
used the equation by Zahn (1977) and tabulated values for E, from
Claret (2004) to calculate the synchronization time-scale for each
of the EL CVn systems in our sample. This shows that the syn-
chronization time-scale of the A/F-type star is less than 10 Myr in
20 systems, and less than 100 Myr for 32 systems. For these 32
systems, the synchronization time is shorter than the time since
mass transfer (0-260 Myr; see Fig. 5). The remaining four systems
(with the smallest values for r;) have synchronization time-scales
that are significantly longer than the estimated age. Based on this

theoretical prediction, we can assume that most of the A/F stars are
rotating synchronously. We would need to obtain an independent
measurement of the rotation period to find whether this is actually
the case.

6.2 Binary evolution and stellar parameters

In the canonical formation channel of EL CVn binaries (e.g. Chen
et al. 2017), two main-sequence stars of similar mass are born at a
short orbital period of a few days. The more massive star evolves
faster and increases in radius. Before it ascends the red giant branch
(RGB)), it fills its Roche lobe and starts stable mass transfer to the
lower-mass secondary star. This process continues until almost the
complete outer envelope is transferred (identified as R CMa-type
binaries; e.g. Lee et al. 2016). The remnant of the initially more
massive star has become a pre-WD with a helium core and a thick
hydrogen envelope (~0.01-0.04 M ; see Istrate et al. 2016a; Chen
et al. 2017). The accretor has become a rejuvenated main-sequence
star of spectral type A or F, which dominates the luminosity of the
system. If present in a specific stellar population as, for example,
found in clusters, such a system would be identified as a ‘blue
straggler’. If the orbital inclination is such that it shows eclipses,
we identify it as an EL CVn binary.

The structure and evolution of pre-He-WDs have been exten-
sively studied, as they also occur at more advanced binary evolu-
tionary stages with either a white dwarf (Marsh et al. 1995) or a
neutron star (van Kerkwijk et al. 2005) as companions. Modelling
of the formation process of binaries with a low-mass pre-He-WD
(Althaus et al. 2013; Istrate et al. 2014a; Istrate, Tauris & Langer
2014b; Istrate et al. 2016a; Chen et al. 2017) shows that there are
strong correlations between the binary orbital period, and the mass,
temperature, radius and age of the pre-He-WD. First, higher-mass
pre-He-WDs are formed at longer orbital periods. This is a direct
result of the mass accretion process. This relation was already found
in pre-He-WD-neutron star binaries and has been parametrized by
Lin et al. (2011). Binary evolution studies by Istrate et al. (2014b)
and Chen et al. (2017) also predict this period—mass relation for EL
CVn binaries. The latter shows that the relation between orbital pe-
riod and mass is very robust, but at the low-mass end of the relation
(0.16-0.20 M(y) there is some spread.

Pre-He-WDs (of a given mass) are also predicted to follow a
particular evolutionary track, corresponding to a particular combi-
nation of radius and temperature as a function of age. The temper-
ature and radius are directly related to the envelope mass and core
mass of the white dwarf. Directly after the mass accretion process
ends, the pre-He-WD is large (2 0.5 R) and has a low (< 8000 K)
surface temperature. While the hydrogen envelope is slowly being
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Figure 5. Temperature versus radius of the pre-He-WDs, with the colours indicating different orbital periods. The coloured lines indicate evolution tracks by
Althaus et al. (2013) for different masses. The dots indicate pre-He-WDs from this study and triangles are other low-mass pre-He-WDs in EL CVn systems:
upward-pointing triangles indicate Kepler discoveries and downward-pointing triangles indicate SWASP discoveries (for references, see Section 1). During
the evolution of pre-He-WDs, multiple hydrogen shell flashes can occur, indicated as grey lines. The tracks before the first H-flash and after the last H-flash
are shown as coloured lines. Isochrones are shown as dashed lines, counted from the end of mass transfer in the binary. The solid black line indicates the
approximate detection limits, estimated by assuming a 71 = 7000K, Ry = 1.5R() primary star. The bottom boundary is set by an eclipse depth of 0.03 mag
in the R band, the top boundary is set by the requirement of a flat-bottom eclipse (R; > 2R;) and the left limit is set by the requirement that the flat-bottom

eclipse is deeper than the secondary eclipse (77 < 7).

consumed by shell burning, the pre-He-WD shrinks and increases
in temperature while maintaining an approximately constant lumi-
nosity (this phase is often referred to as the constant luminosity
phase). When almost the entire envelope has been consumed, the
pre-He-WD starts to cool down while the radius keeps decreasing
(the cooling track). At the beginning of the cooling track, multiple
hydrogen shell flashes (H-flash; e.g. Driebe et al. 1998) can occur
in the more massive pre-He-WDs. These flashes briefly increase
the temperature and radius of the star, after which the white dwarf
settles back on the cooling track. The exact mass boundary at which
this starts to occur is uncertain. Models by Althaus et al. (2013)
show shell flashes for masses above ~0.18 M, while Istrate et al.
(2014b) put this boundary at ~0.21 M.

Fig. 5 shows the temperature versus radius of the pre-He-WD,
with the colour of the points indicating the orbital period of the
system. This shows that the temperatures and radii we find are con-
sistent with predictions for pre-He-WDs in the constant luminosity
phase, and before the occurrence of any H-flash. While some of the
measurements are also consistent with pre-He-WDs undergoing an
H-flash (grey lines), the short time spent in this phase makes this
extremely unlikely. For the PTF sample, the orbital period (indi-
cated by the colours) follows the same trend as the models, with
long-period systems containing larger and hotter pre-He-WDs. To
test if the data match the models, we interpolate the models in or-
bital period, which allows us to test directly how well the radius
and temperature match the model for a given orbital period. The
fraction of measurements within 1, 3 and 5 standard deviations is
25, 75 and 86 per cent. Given the fact that we interpolate, and the
uncertainties on radius and temperature could contain some sys-
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tematic uncertainties, we conclude that most of the measurements
agree with the models. This comparison to the models also allows
us to infer the time since the end of mass transfer, which ranges
from O to 260 Myr with an average of 110 Myr.

Fig. 6 shows the orbital period of the binary versus the mass of
the pre-He-WD. The left panel shows the measured values, while
the right panel shows the expected masses using the models in-
ferred from the measured temperature and radius (Fig. 5). The
measured values indicate that all pre-He-WDs are low-mass sys-
tems, but the PTF sample scatters around the model predictions.
The right panel shows that if the radius and temperature measure-
ments and models are used to derive the mass, the results fall within
10 per cent of the prediction of the mass—period relation for pre-
He-WDs.

There are two possible explanations for this discrepancy. Either
we have underestimated the uncertainties on the mass measure-
ments, or there is some additional intrinsic spread on the predicted
mass versus period, radius and temperature not properly modelled.
There are a number of possible systematic uncertainties that could
affect the mass determination. First of all, we have assumed that
the A/F star is a regular main-sequence star with a solar metallic-
ity to estimate its mass (see Fig. 4). In Fig. 6, we have indicated
how the mass estimate changes if we assume a different metallicity.
If the real metallicity is lower than assumed, the mass is overes-
timated. This could explain a part of the inconsistency with the
theory, but extreme metallicities would be needed to explain the
largest outliers. Because thick disc systems generally have a lower
metallicity, the masses for these systems could be overestimated.
However, the thick disc systems do not show any particular trend,
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Figure 6. Pre-He-WD mass versus the orbital period of the binary. The left panel shows the measured mass (using the radial velocity amplitude) of the PTF
sample and the right panel shows the mass derived from the radius and temperature models (see Fig. 5). Large points indicate PTF systems with a radial
velocity measurement and small points indicate systems without a radial velocity measurement (not shown in the right panel because of the high uncertainties).
Grey triangles indicate mass—period measurements of other EL CVn systems; upward-pointing triangles indicate Kepler discoveries and downward-pointing
triangles indicate SWASP discoveries (for references, see Section 1). The black line shows the period—mass relation by Lin et al. (2011), and the shaded area

indicates a 10 per cent uncertainty on this relation.

indicating that this assumption might not be the dominant cause of
the inconsistency with the model predictions.

Another possibility is that we have underestimated our measure-
ment uncertainties. The mass of the pre-He-WD is mostly deter-
mined by the radial velocity measurement. As shown in Fig. A3
in the Appendix, we need to add an additional uncertainty to the
formal uncertainties in order to explain all variance in the radial ve-
locity measurements. For PTFS1601cl (one of the outliers), where
we did not obtain radial velocity measurements at the quadratures,
small systematic offsets between measurements can have a large
impact on the radial velocity amplitude. We did check the radial
velocity amplitude measurements of PTFS1512bf by obtaining a
few high-resolution spectra with the Echellette Spectrograph and
Imager (ESI) on the Keck telescope. The resulting radial velocity
amplitude measured from these spectra is consistent with the result
from the IDS spectra, which leads to the conclusion that uncertain-
ties resulting from an unstable detector are most likely very small.

An alternative explanation is that there is some intrinsic variance
between mass and period, radius and temperature. For example,
Istrate et al. (2016b) show that assumptions about rotation, diffusion
and metallicity give different results when modelling the mass,
radius and temperature of pre-He-WDs. The magnitude of the effect
is estimated to be low, about 10 per cent. This would be enough to
explain the variance in the right panel but it cannot explain the
outliers on the left panel.

To solve this ambiguity, a measurement of both the main-
sequence and pre-He-WD radial velocity is needed. This allows
the mass of both stars to be calculated by only using Kepler’s law
(combined with the period and inclination measurement from the

light curve). This has been done for SWASP J0247-25 (Maxted et al.
2013), KOI-81 (Matson et al. 2015), KIC-10661783 (Lehmann et al.
2013) and KIC-8262223 (Guo et al. 2017). For SWASP J0247-25,
KIC-10661783 and KIC-10661783, the mass of the pre-He-WD
agrees well with the period—mass relation, but for KOI-81, the mass
is significantly lower (0.10 M) than the period—mass relation pre-
dicts. This hints that there is more scatter in the period—mass relation
than models estimated.

6.3 Galactic population and space density

Using stellar evolution and population synthesis codes, Chen et al.
(2017) predict a space density of 4-10 x 10~ pc~ for EL CVn
binaries (including non-eclipsing ones) with orbital periods less
than 2.2 d. In addition, they predicted that EL CVn binaries should
mainly be found in young stellar populations, and therefore should
be more abundant in the thin disc. We use the Galaxy model based
on SDSS data by Juri¢ et al. (2008) to estimate how many EL CVn
binaries we would expect to see given this space density and in
what ratios between thin disc, thick disc and halo. We populate
our model Galaxy with stars with absolute magnitudes according
to a normal distribution with a mean and standard deviation of
R = 2.46 £ 0.54 mag, values determined from our sample of 36
systems. We simulate the PTF coverage by using (overly) simple
requirements: |b| > 15,8 > 0, 13.5 < R < 16 (see Fig. 1). We
ignore the Galactic plane because these fields tend to be observed
only ~50 times. The minimum number of epochs in our uncovered
sample is 58, indicating that at least 58 observations are needed to
identify an EL CVn binary. Using the 58 epoch limit, we derive
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an effective coverage of 32.8 per cent for the remaining area. We
also correct for the requirement that the systems must be eclipsing.
This decreases the number of observable EL CVn systems by a
factor of 0.307, which is determined from our sample using radii
and inclination. Even if the binaries are eclipsing, if the pre-He-WD
is too small (and thus old), we would not find it in the PTF data. To
correct for this, we assume a lifetime of EL. CVn binaries of 1 Gyr
(the main-sequence lifetime of a 2-M¢, star) and we compare this
to the typical age of PTF EL CVn binaries (0—260 Myr). Therefore,
we assume that the PTF can only detect 26 per cent of all EL CVn
binaries.

According to the model and the assumed selection criteria, 26
per cent of the PTF sample should be from the thin disc. If we
assume that our model is correct, then there is only a 1.8 per cent
chance, 2,112=7( 1nz) 0.26" (1 — 0.26)'>7", of finding > seven thin
disc systems out of a total of 12 EL CVn systems. If any of the
ambiguous cases are from the thin disc, this probability drops well
below 1 per cent. This indicates that our model is unlikely to be
correct, and confirms that EL CVn systems are more abundant in
the thin disc compared to the average stellar population, as was
already suggested by Chen et al. (2017).

Using the model and estimated PTF detection efficiency, we also
predict that we should have found ~300-750 EL CVn systems, a
factor of ~10-25 higher than we actually recovered. This could
simply be because we are overpredicting the contributions of the
thick disc and halo. However, even if we assume a factor of 4 higher
contribution from the thin disc (to bring the model in line with the
ratio of thin to thick disc systems), the model still predicts at least
a factor of 5-12 more EL CVn systems than we have found. An-
other uncertain estimate that could explain the discrepancy is the
assumed efficiency of the PTF at finding EL CVn binaries. The PTF
observing cadence and coverage are highly inhomogeneous, and the
assumptions we have used are very simple approximations. Assum-
ing that we can find all EL CVn systems that are observed more
than 58 times and are younger than 200 Myr is overly optimistic,
and could explain the discrepancy of a factor of 5 (or more).

The inhomogeneity of the PTF data set makes it difficult to per-
form a proper study of the Galactic distribution and space density
of EL CVn systems. We do find tentative results that EL CVn sys-
tems occur more often in the thin disc, as was predicted by Chen
et al. (2017). We also find that the space density is at the lower
bound, or even below the prediction of 4-10 x 10~% pc=3. To prop-
erly measure the properties of the population of EL CVn systems,
a larger sample of EL CVn binaries is needed, preferably from a
more uniform variability survey.

6.4 Comparison with the SWASP sample

To better understand the biases of our survey, we compare the PTF
sample to the sample found by SWASP (Maxted et al. 2014a).
While we have both used the light-curve characteristics to identify
EL CVn binaries, there are some intrinsic differences between the
surveys, and therefore different biases in finding EL. CVn systems.
The most obvious difference between the surveys is the magnitude
range; SWASP probes magnitudes between 9 and 13 mag, while
our sample is fainter, between 13.5 and 16 mag. A second major
difference is the cadence and the number of epochs in a light curve;
PTF light curves have an irregular cadence and a low number of
epochs (~100) compared to the regular cadence and better-sampled
SWASP light curves (~4000-13 000 epochs).

There are indeed differences between the two samples. First, the
distance range for the SWASP sample is 100-1200 pc, while the PTF
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Figure 7. Top: the temperature of the A/F star versus the orbital period
of the EL CVn system. Bottom: the distribution of orbital periods of the
PTF sample (red) and the SWASP sample (blue). In the top left, the results
of the KS test and AD test are shown (see text). The top panel shows that
there is a strong correlation between orbital period and temperature, which
is a result of the binary evolution process (see text). The histograms show
that the PTF data are more biased to short-period systems compared to the
SWASP sample. It also shows a possible gap at periods of 1d, caused by a
detection bias against these systems. For comparison, we also plotted the de-
tection probability of an eclipsing population with well-sampled light curves
(x P2/3, dotted line), and for light curves with a limited amount of epochs
(ox P43, dashed line).

sample reaches 1200-5000 pc. This is expected given the different
magnitude range of the two surveys. Therefore, we also expect
to find relatively more thick disc and halo systems compared to
thin disc systems in the PTF sample. However, using the one-sided
Fisher’s exact test (Fisher 1934), we find no significant difference
in the relative number of thin disc systems. This is consistent with
our finding that EL CVn systems are more numerous in the thin
disc compared to the average stellar population and it explains why
at larger distances it is still the most dominant population.

The two samples are also different with regards to orbital period
and temperature of the A/F star (which dominates the luminosity);
see Fig. 7. We performed a Kolmogorov—Smirnov (KS) test and an
Anderson—Darling (AD) test (e.g. section 3.1 in Feigelson & Babu
2012) to compare the distribution of orbital periods. Both tests show
that it is unlikely that the samples are drawn from the same distribu-
tion (pks = 0.013 and pap = 0.005). The histogram in Fig. 7 shows
that we find more short orbital period systems and the top panel in
Fig. 7 shows that, at short orbital periods, the temperature of the
primary star is low. This correlation can be understood because the
mass of the A/F star is correlated with the orbital period. High-mass
main-sequence stars (2 M) begin their main-sequence lifetime at
a temperature of 9500 K, and cool down to 7500 K towards the end
of their main-sequence lifetime (see Fig. 4). Main-sequence stars
of 1.3 My start at a temperature of 7500 K and only cool by 500K
during their time on the main sequence. Therefore, the PTF’s sen-
sitivity for lower-luminosity (lower-temperature) EL. CVn systems
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(partially) explains why the PTF sample contains more short-period
systems.

A second explanation is that, because of the sparse sampling,
it is harder to find long-period systems with the PTF compared
to SWASP. Both surveys use eclipses to find EL CVn binaries,
and therefore are biased towards short-period systems (Probe o
R P~%?). In addition, short-period systems spend a larger fraction
of their orbit in eclipse (T.q o R P~*?3). This does not bias the
SWASP search as the light curves are well sampled. With the PTF,
however, a lack of observations during the eclipse can hinder the
identification of a system as an EL CVn binary.

The difference between the two samples shows that selection ef-
fects make it difficult to determine the intrinsic properties of EL
CVn binaries. To do so requires an integrated approach: stellar evo-
lution and population synthesis models should be used to simulate
a sample of EL CVn binaries, which are then ‘observed’ by simu-
lating the variability survey that was used to find the real sample.
Such a calculation is difficult given the inhomogeneity of the PTF
sample, and it is beyond the scope of this work.

6.5 Pulsations

Pre-He-WDs are predicted to exhibit both p- and g-mode pulsations
(e.g. Corsico & Althaus 2014, 2016; Cdrsico et al. 2016; Istrate
et al. 2016b). Pulsations have been found in two of the SWASP EL
CVn binaries: WASP 0247-25 (Maxted et al. 2013; Istrate, Fontaine
& Heuser 2017) and WASP 1628+10 (Maxted et al. 2014b). The
pulsation periods are 5—10 min and the amplitudes ~1-2 per cent of
the pre-He-WD luminosity. Models of pre-He-WDs predict thatin a
large area in 7-log g space, pre-He-WDs should feature pulsations;
see fig. 10 in Cdrsico et al. (2016) and see also Istrate et al. (2016b).
Many of the pre-He-WDs in the PTF sample lie in this region,
making them useful to test the general predictions for pulsation
theory. In addition, because stellar parameters can be measured
very precisely, a pulsating pre-He-WD in an eclipsing binary is
extremely useful to test evolutionary and seismic models in great
detail (e.g. Istrate et al. 2017).

Unfortunately, the very sparse sampling of the PTF light curves
makes it very difficult to identify such pulsations. We did attempt
to find pulsations by using a Lomb—Scargle algorithm (Lomb 1976;
Scargle 1982, implementation by VanderPlas & Ivezi¢ 2015) on
the residuals of the light curves. We found periodic behaviour in
the residuals at predicted periods of ~10 min for a number of the
systems, but because of the sparse sampling and low amplitude,
it is difficult to determine if these are real or not. High-cadence
follow-up photometry is needed to establish the reality of these
pulsations.

7 SUMMARY AND CONCLUSION

In this paper, we report on the discovery and analysis of 36 new EL
CVn systems extracted from PTF data. With this sample, we more
than double the number of known EL CVn systems. To find the EL
CVn systems, we used machine learning classifiers to make a pre-
selection of candidates. This has proven to be an efficient method
to minimize the number of light curves that have to be visually
inspected.

The radii (0.16-0.7R()) and temperatures (800017 000 K) of
the pre-He-WDs in the sample indicate that they are all young
systems in the constant luminosity phase (0-250 Myr) of their evo-
lution. The masses of the pre-He-WDs are all low (<0.3 M), but
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our measurements show a large spread around the predicted mass—
period relation, which remains unexplained. If we use the measured
radii and temperatures combined with models, we do find masses
consistent with the mass—period relation. Either this discrepancy
is due to systematic or underestimated uncertainties in our mea-
surements, or there is more variance in the masses than the stellar
evolution models predict. This problem can be resolved by obtaining
more accurate radial velocity measurements (ideally for both stars
in the binary to obtain an independent mass ratio measurement), and
by more extensively testing the effect on the mass—period relation
of, for example, different metallicities and rotation rates.

Although a detailed population study is difficult with the PTF
data set, we find that EL CVn binaries occur more often in the thin
disc than an average Galactic stellar population. In addition, we
find that the space density is most likely lower than the predicted
value of 4-10 x 107® pc=3. To properly determine the properties of
the EL CVn population, a more systematic search combined with
stellar and Galactic modelling is required.

This new sample of young pre-He-WDs will be useful to put many
theoretical models to the test, including stellar structure models
for low-mass white dwarfs, pulsation models and binary evolution
models. In addition, the methods we have used to identify EL CVn
systems can easily be adapted to find other rare types of variable
stars and these (and similar machine learning methods) will be vital
to fully utilize (future) variability surveys such as the ZTF (Bellm
2014), NGTS (Wheatley et al. 2018), GOTO (Steeghs & Galloway
2017), BlackGEM (Bloemen et al. 2015), the Transiting Exoplanet
Survey Satellite (TESS; Ricker et al. 2015), PLATO (Rauer et al.
2014) and the Large Synoptic Survey Telescope (LSST; Ivezic et al.
2008).
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APPENDIX A: ADDITIONAL TABLES AND
FIGURES

Table Al. List of the features used by the machine learning classifiers.

PTF variability

WRMS (mag) Weighted rms of the PTF light curve

skew (mag) Skewness of the PTF light curve

medAbsDev (mag) Median absolute deviation of the PTF light curve

Stets] Stetson-J statistic of the PTF light curve

StetsK Stetson-K statistic of the PTF light curve

Neumann Von Neumann ratio statistic of the PTF light
curve

MBR Median buffer range: fraction of points more
than 20 per cent of the light-curve amplitude
from the weighted mean magnitude, divided by
total number of epochs

AMBS{1,2,3} Fraction of light-curve points that are # standard
deviation above the mean magnitude

BMBS{1,2,3} Fraction of light-curve points that are # standard

deviation below the mean magnitude

Range containing {90,80,65,50,35,20} per cent
of the data.

#th percentile minus the median of the PTF light
curve, divided by prange90, with # in
{5,10,17.5,25,32.5,40,60,67.5,75,82.5,90,95} .

prange{#} (mag)

percentile{#}

PAN-STARRS colours

PSr (mag) Pan-STARRS r — median of the light curve
PSgr (mag) Pan-STARRS ¢ — r

PSri (mag) Pan-STARRS r — i

PSiz (mag) Pan-STARRS i — z

PSzy (mag) Pan-STARRS z —y

2MASS colours

J (mag) 2MASS J — median of the light curve

JH (mag) 2MASSJ - H

HK (mag) 2MASS H — K

Table A2. Overview of the nights at the INT with the IDS.

Date Grating CCD Seeing Weather
(arcsec)

2016-09-07 R632V RED+2 0.6 Excellent
2016-09-08 R632V RED+2 0.7 Excellent
2016-09-09 R632V RED+2 0.6 Excellent
2016-09-10 R632V RED+2 0.7 Good
2016-09-11 R632V RED+2 0.6-1.0 Good
2016-09-12 R632V RED+2 0.7-1.0 Good
2016-09-13 R632V RED+2 0.8-1.2 Good
2016-09-14 R632V RED+2 1.0 Good
2016-12-14 R900V RED+2 0.8-14 Good
2016-12-15 R900V RED+2 1.4 OK
2017-01-09 R900V RED+2 0.8 Good
2017-01-10 R900V RED+2 1.2-2.6 OK-Bad
2017-03-10 RO00V EEV10 1.5-3.0 Bad
2017-03-11 R900V EEV10 - Clouds
2017-03-12 R900V EEV10 2-4 Bad
2017-03-13 R900V EEV10 1.5 Bad
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Table A3. The temperatures of the A/F star (77) and pre-He-WD (7>)
determined from the SED of the binary stars (see Fig. A2). The E(B — V)
values are taken from Schlegel, Finkbeiner & Davis (1998) and Schlafly &
Finkbeiner (2011), with an uncertainty of 0.034 (as in Maxted et al. 2011).
The ‘rms’ column indicates the additional uncertainty added to account for
all variance, which is achieved by the parameter f in equation (2).

D Ty (K) T, (K) EB-V) rms
1600y 6930 + 100 8900 + 110 0.047 0.05
1600ad 8050 & 120 10490 = 200 0.024 0.04
1700do 9890 + 110 17100 =+ 1400 0.015 0.03
1600aa 7890 + 190 9300 =+ 400 0.107 0.02
1601p 8600 + 160 11700 =+ 500 0.030 0.03
1501bh 6870 £ 110 11100 + 400 0.035 0.03
1601q 8300 + 230 10700 =+ 700 0.081 0.03
1601cl 8280 =+ 200 10100 + 300 0.030 0.04
1402de 7870 + 150 9300 + 300 0.100 0.03
1607aa 8470 + 160 10300 + 300 0.087 0.04
1607v 7260 + 130 10900 =+ 500 0.090 0.03
1607t 6600 & 140 8600 & 200 0.009 0.10
1607ab 6980 + 100 8810 + 80 0.005 0.09
1608ab 7360 + 240 7900 + 400 0.037 0.05
1612al 7280 + 110 10300 =+ 300 0.039 0.01
1512bf 6920 + 90 9740 + 180 0.022 0.03
1613s 7350 + 140 13700 =+ 800 0.051 0.04
1613u 7340 + 70 9690 + 160 0.006 0.04
1615ag 7380 + 200 10200 =+ 400 0.093 0.05
1615v 6920 + 120 9400 + 300 0.030 0.03
1515ay 6800 + 100 7930 + 150 0.029 0.04
1615w 6690 + 110 10300 + 200 0.046 0.04
1615a0 7580 + 170 8700 + 160 0.070 0.03
1615u 7400 + 200 12200 + 600 0.069 0.06
1616cr 7060 + 120 8000 + 170 0.095 0.10
1617n 7500 + 110 11600 + 400 0.022 0.03
1617m 6990 + 190 9320 + 190 0.071 0.04
16191 6870 + 120 9200 + 150 0.031 0.04
1521ct 8520 & 180 9800 + 300 0.090 0.02
1621ax 7340 + 170 11800 + 700 0.108 0.04
1521cm 7290 + 80 9240 + 90 0.051 0.02
1622by 7730 + 260 11100 + 1400 0.079 0.07
1522cc 6860 + 120 9570 £ 190 0.042 0.06
1622aa 7490 + 290 10900 + 1300 0.160 0.11
1622bt 7750 + 220 12200 £ 1000 0.061 0.07
17234 6640 + 130 11000 + 400 0.061 0.04
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Table A4. The parameters of the light-curve models shown in Fig. Al. This table shows the median and rms of the final 5120 points in our MCMC chains.

Note that these distributions are not normally distributed and parameters can be strongly correlated.

1D P fo i q (r) (r2) T»/T1  absorbg  absorby  log(fr)  log(fy) Fill P

band ) (BMIDyqp) ©) (Pe)
1600y 1.1838920 55570.2084 84.5 0.12 0.421 0.081 0.73 0.8 0.8 2.1 2.5 0.748 0.114
R+g 0.0000008 0.0006 2.7 0.02 0.010 0.003 0.03 0.2 0.2 0.0 0.1 0.019 0.007
1600ad 1.0840448 56247.4677 86.5 0.11 0.328 0.063 0.80 1.3 1.0 -2.3 —2.4 0.575 0.292
R+g 0.0000010 0.0006 2.2 0.03 0.008 0.003 0.03 0.5 0.5 0.0 0.1 0.025 0.019
1700do 3.0507595 55556.8044 87.4 0.33 0.178 0.025 0.77 2.8 -2.3 0.380 0.187
R 0.0000281 0.0014 1.8 0.10 0.010 0.002 0.04 1.2 0.0 0.020 0.024
1600aa 0.6934558 56892.6368 78.7 0.29 0.391 0.128 0.94 3.6 3.2 2.5 —2.6 0.801 0.362
R+g 0.0000006 0.0003 0.8 0.05 0.007 0.004 0.01 0.8 0.8 0.2 0.4 0.026 0.021
1601p 1.2215885 57152.5232 84.0 0.21 0.274 0.056 0.84 1.4 1.1 —2.2 -2.3 0.534 0.358
R+g 0.0000051 0.0010 3.1 0.09 0.019 0.005 0.03 1.0 1.1 0.0 0.3 0.036 0.059
1501bh 0.6204144 55097.3927 78.4 0.14 0.356 0.058 0.64 0.5 0.4 2.1 -2.1 0.646 0.674
R+g 0.0000005 0.0008 1.9 0.04 0.017 0.004 0.04 0.3 0.2 0.1 0.0 0.023 0.085
1601q 1.2515054 57190.1373 80.6 0.12 0.308 0.074 0.91 1.6 2.2 -2.3 -2.5 0.535 0.266
R+g 0.0000051 0.0012 2.7 0.07 0.021 0.007 0.03 1.1 1.2 0.1 0.3 0.049 0.051
1601cl 0.8917354 56063.3087 82.9 0.11 0.475 0.101 0.95 2.3 1.9 —-2.1 -2.3 0.830 0.142
R+g 0.0000005 0.0004 2.9 0.02 0.011 0.004 0.02 0.8 0.7 0.0 0.0 0.021 0.009
1402de 0.6189694 55768.8152 87.0 0.17 0.405 0.119 0.91 2.5 -2.9 0.757 0.454
R 0.0000011 0.0008 2.4 0.07 0.015 0.006 0.03 1.1 0.3 0.052 0.049
1607aa 0.8463124 56246.6579 84.4 0.14 0.375 0.079 0.92 2.2 3.7 2.6 —-2.6 0.678 0.314
R+g 0.0000017 0.0007 3.6 0.03 0.017 0.005 0.03 1.0 0.9 0.3 0.2 0.024 0.035
1607v 0.7198355 55769.1206 82.7 0.13 0.447 0.039 0.66 2.0 2.2 —2.4 —-2.3 0.808 0.256
R+g 0.0000020 0.0014 5.7 0.04 0.037 0.007 0.08 1.0 1.0 0.1 0.0 0.038 0.048
1607t 0.8759507 56158.7102 76.6 0.09 0.417 0.085 0.74 0.7 0.5 —-2.3 —-2.3 0.712 0.220
R+g 0.0000004 0.0004 1.0 0.02 0.009 0.003 0.03 0.2 0.2 0.0 0.0 0.020 0.014
1607ab 0.7730986 55151.7862 83.8 0.18 0.351 0.077 0.77 1.9 1.5 —-2.3 -2.2 0.665 0.439
R+g 0.0000002 0.0004 2.3 0.03 0.010 0.003 0.03 04 04 0.1 0.0 0.020 0.035
1608ab 0.6101718 57034.9178 86.8 0.07 0.390 0.146 0.90 0.4 -3.0 0.656 0.551
R 0.0000014 0.0003 1.9 0.07 0.006 0.004 0.02 0.3 0.3 0.058 0.044
1612al 0.6369260 55782.6928 86.8 0.12 0.322 0.103 0.69 0.1 —2.3 0.574 0.880
R 0.0000006 0.0007 2.0 0.06 0.009 0.004 0.03 0.1 0.1 0.043 0.084
1512bf 0.6074343 56100.9311 87.2 0.10 0.438 0.091 0.66 0.1 0.1 -2.1 -2.2 0.762 0.391
R+g 0.0000002 0.0002 1.9 0.02 0.005 0.003 0.03 0.1 0.1 0.0 0.0 0.017 0.012
1613s 1.1420695 56511.1762 76.2 0.10 0.470 0.044 0.60 1.2 1.2 -2.2 -2.2 0.812 0.091
R+g 0.0000024 0.0014 6.0 0.03 0.050 0.008 0.05 0.5 0.5 0.1 0.0 0.050 0.023
1613u 0.5644902 56787.5255 81.6 0.18 0.472 0.107 0.77 1.4 1.6 —24 —-2.5 0.889 0.340
R+g 0.0000003 0.0003 2.7 0.03 0.012 0.004 0.03 04 04 0.1 0.2 0.023 0.024
1615ag 0.6806898 55380.8645 85.8 0.17 0.410 0.079 0.76 2.2 1.9 -2.2 -24 0.772 0.358
R+g 0.0000046 0.0010 33 0.04 0.013 0.005 0.05 1.0 0.8 0.3 0.1 0.026 0.029
1615v 0.5594054 54962.6621 73.7 0.10 0.457 0.099 0.71 0.2 0.1 —2.2 -2.9 0.784 0.410
R+g 0.0000003 0.0007 14 0.02 0.012 0.004 0.03 0.1 0.1 0.1 0.3 0.029 0.031
1515ay 0.4642873 56138.1751 89.0 0.11 0.452 0.161 0.83 0.0 0.1 —2.2 —-1.9 0.794 0.606
R+g 0.0000001 0.0002 1.1 0.03 0.003 0.002 0.02 0.0 0.1 0.1 0.0 0.027 0.018
1615w 1.4407151 56530.5582 77.7 0.15 0.393 0.060 0.60 0.7 0.4 -2.9 -2.5 0.723 0.092
R+g 0.0000024 0.0010 2.7 0.04 0.021 0.004 0.04 0.3 0.2 0.3 0.1 0.026 0.015
1615a0 0.8954515 56308.1400 77.6 0.24 0.368 0.129 0.94 2.1 1.9 -24 —-2.5 0.729 0.273
R+g 0.0000007 0.0005 0.8 0.06 0.007 0.005 0.02 1.1 1.0 0.3 0.2 0.038 0.020
1615u 0.7777349 56185.6219 82.4 0.16 0.297 0.038 0.59 1.4 1.8 —-2.1 -2.2 0.554 0.726
R+g 0.0000011 0.0011 4.2 0.07 0.034 0.006 0.05 0.7 0.8 0.1 0.0 0.041 0.191
1616¢cr 0.5649690 55972.1677 82.5 0.05 0.416 0.141 0.84 0.4 0.5 -2.3 -3.0 0.657 0.558
R+g 0.0000002 0.0002 0.9 0.01 0.005 0.002 0.02 0.2 0.1 0.2 0.2 0.021 0.025
1617n 2.3367776 55591.4345 87.3 0.21 0.258 0.040 0.63 2.6 1.5 —-2.1 -24 0.501 0.117
R+g 0.0000052 0.0027 2.1 0.07 0.012 0.003 0.04 0.8 0.5 0.1 0.1 0.025 0.013
1617m 3.7728999 56584.2146 87.8 0.24 0.206 0.056 0.68 0.6 0.7 2.1 —2.2 0.410 0.085
R+g 0.0000083 0.0010 1.5 0.15 0.005 0.002 0.03 0.5 0.4 0.1 0.1 0.046 0.011
16191 1.1599993 56560.2644 82.7 0.14 0.385 0.061 0.67 1.2 3.6 —2.2 -2.3 0.704 0.153
R+g 0.0000017 0.0016 4.2 0.04 0.022 0.006 0.04 0.4 0.8 0.1 0.3 0.029 0.021
1521ct 1.1724964 56907.7345 83.2 0.17 0.282 0.093 0.92 1.2 2.2 -2.3 -2.9 0.528 0.373
R+g 0.0000013 0.0005 1.4 0.09 0.009 0.004 0.02 0.8 1.1 0.1 0.3 0.046 0.044
1621ax 1.0181525 56741.7492 83.1 0.17 0.401 0.029 0.57 29 2.2 -2.2 -2.2 0.758 0.171
R+g 0.0000044 0.0017 4.8 0.04 0.028 0.006 0.07 0.9 1.1 0.0 0.1 0.031 0.027

Downl oaded from https://academn c. oup. com nmras/articl e-abstract/ 475/ 2/ 2560/ 4832486 MNRAS 475’ 2560-2590 (2018)

by California Institute of Technol ogy user
on 29 March 2018



2578  J. van Roestel et al.

Table Ad — continued

ID P o i q (r1) (r2) T>/T absorbg abSOrbg’ log (fr) log(fgr) Fill P

band (d) (BMIDygb) ©) (e@)
1521ecm  0.6854774  56068.9363 80.0 022  0.381 0.110 0.78 0.7 0.8 2.9 —2.6 0.740  0.428
R+g 0.0000002 0.0002 1.0 0.04  0.008 0.003 0.02 0.3 0.2 0.3 0.2 0.025 0.027
1622by 0.7486683 55718.0157 8.6 016 0424  0.076 0.81 35 3.1 —2.4 2.9 0.791 0.270
R+g 0.0000015 0.0010 3.6 0.03 0.017 0.005 0.04 0.9 0.8 0.3 0.3 0.024  0.025
1522cc 0.5717853 56641.9749 812  0.18 0472 0.078 0.69 1.4 1.2 —24 —2.6 0.894  0.331
R+g 0.0000003 0.0003 3.1 0.03 0.013 0.004 0.04 0.3 0.3 0.1 0.2 0.018 0.023
1622aa 0.7661291 57136.1682 84.7 0.10 0410  0.060 0.75 0.6 1.4 —2.4 2.9 0.716  0.302
R+g 0.0000038 0.0014 4.0 0.03 0.022  0.006 0.05 0.5 0.7 0.2 0.3 0.026  0.038
1622bt 0.6884160  56746.2432 792  0.17  0.425 0.071 0.70 1.7 1.4 —-23 —-2.5 0.795 0.314
R+g 0.0000004 0.0003 2.0 0.02  0.012  0.003 0.03 0.4 0.3 0.0 0.2 0.017 0.023
1723aj 1.1088064  56733.1351 85.6  0.11 0460  0.042 0.52 0.5 0.5 —2.4 -3.1 0.818 0.100
R+g 0.0000009 0.0004 33 0.02  0.011 0.003 0.05 0.2 0.2 0.0 0.2 0.022  0.006
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Figure A1. The PTF light curves in R (left) and g’ (right) with the best model overplotted (see Table A4).
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Figure A1 — continued
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Figure A2. The SED and the best-fitting model spectra (see Table A3). The grey lines show the SED of the A/F star and pre-He-WD. The black line shows
the sum of both components. The A/F star dominates the SED over the whole wavelength range, except in the far-UV in some of the cases.
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Figure A3. The radial velocity measurements with the INT and the best-fitting model. Black error bars show the estimated uncertainty from the cross-
correlation procedure, while the red error bars show the uncertainties required to account for all residual variance. The shaded grey contours show the 1, 2 and

3 standard deviation intervals of model, obtained using the larger uncertainties.
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Figure A3 - continued
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