1,583 research outputs found

    Behaviour of concrete filled stainless steel elliptical hollow sections

    Get PDF
    This paper presents the behaviour and design of axially loaded concrete filled stainless steel elliptical hollow sections. The experimental investigation was conducted using normal and high strength concrete of 30 and 100 MPa. The current study is based on stub column tests and is therefore limited to cross-section capacity. Based on the existing design guidance in Eurocode 4 for composite columns, the proposed design equations use the continuous strength method to determine the strength of the stainless steel material. It is found to provide the most accurate and consistent prediction of the axial capacity of the composite concrete filled stainless steel elliptical hollow sections due largely to the more precise assessment of the contribution of the stainless steel tube to the composite resistance

    Systems and methods for monitoring solids using mechanical resonator

    Get PDF
    Multi-phase system monitoringmethods, systems and apparatus aredisclosed. Preferred embodiments comprise one or more mechanical resonator sensing elements. In preferred embodiments a sensor or a sensor subassembly is ported to a fluidized bed vessel such as a fluidized bed polymerization reactor

    Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: an eddy covariance study

    Get PDF
    Coralline algal (maerl) beds are widespread, slow-growing, structurally complex perennial habitats that support high biodiversity, yet are significantly understudied compared to seagrass beds or kelp forests. We present the first eddy covariance (EC) study on a live maerl bed, assessing the community benthic gross primary productivity (GPP), respiration (R), and net ecosystem metabolism (NEM) derived from diel EC time series collected during 5 seasonal measurement campaigns in temperate Loch Sween, Scotland. Measurements were also carried out at an adjacent (~20 m distant) permeable sandy habitat. The O2 exchange rate was highly dynamic, driven by light availability and the ambient tidally-driven flow velocity. Linear relationships between the EC O2 fluxes and available light indicate that the benthic phototrophic communities were lightlimited. Compensation irradiance (Ec) varied seasonally and was typically ~1.8-fold lower at the maerl bed compared to the sand. Substantial GPP was evident at both sites; however, the maerl bed and the sand habitat were net heterotrophic during each sampling campaign. Additional inputs of ~4 and ~7 mol m-2 yr-1 of carbon at the maerl bed and sand site, respectively, were required to sustain the benthic O2 demand. Thus, the 2 benthic habitats efficiently entrap organic carbon and are sinks of organic material in the coastal zone. Parallel deployment of 0.1 m2 benthic chambers during nighttime revealed O2 uptake rates that varied by up to ~8-fold between replicate chambers (from -0.4 to -3.0 mmol O2 m-2 h-1; n = 4). However, despite extensive O2 flux variability on meter horizontal scales, mean rates of O2 uptake as resolved in parallel by chambers and EC were typically within 20% of one another

    Assessing movements of three buoy line types using DSTmilli Loggers: Implications for entanglements of bottlenose dolphins in the crab pot fishery

    Get PDF
    A study was conducted in October 2006 in the Charleston, South Carolina area to test the movements of three different buoy line types to determine which produced a preferred profile that could reduce the risk of dolphin entanglement. Tests on diamond-braided nylon commonly used in the crab pot fishery were compared with stiffened line of Esterpro and calf types in both shallow and deep water environments using DSTmilli data loggers. Loggers were placed at intervals along the lines to record depth, and thus movements, over a 24 hour period. Three observers viewed video animations and charts created for each of the six trial days from the collected logger data and provided their opinions on the most desirable line type that fit set criteria. A quantitative analysis (ANCOVA) of the data was conducted taking into consideration daily tidal fluctuations and logger movements. Loggers tracking the tides had an r2 value approaching 1.00 and produced little movement other than with the tides. Conversely, r2 values approaching 0.00 were less affected by tidal movement and influenced by currents that cause more erratic movement. Results from this study showed that stiffened line, in particular the medium lay Esterpro type, produced the more desirable profiles that could reduce risk of dolphin entanglement. Combining the observer’s results with the ANCOVA results, Esterpro was chosen nearly 60% of the time as opposed to the nylon line which was only chosen 10% of the time. ANCOVA results showed that the stiffened lines performed better in both the shallow and deep water environments, while the nylon line only performed better during one trial in a deep water set, most probably due to the increased current velocities experienced that day. (58pp.)(PDF contains 68 pages

    Frictional Wage Dispersion in Search Models: A Quantitative Assessment

    Get PDF
    We propose a new measure of frictional wage dispersion: the mean-min wage ratio. For a large class of search models, we show that this measure is independent of the wage-offer distribution but depends on statistics of labor-market turnover and on preferences. Under plausible preference parameterizations, observed magnitudes for worker flows imply that in the basic search model, and in most of its extensions, frictional wage dispersion is very small. Notable exceptions are some of the most recent models of on-the-job search. Our new measure allows us to rationalize the diverse empirical findings in the large literature estimating structural search models. (JEL D81, D83, J31, J41, J64)

    Pleural mesothelioma and lung cancer risks in relation to occupational history and asbestos lung burden.

    Get PDF
    BACKGROUND: We have conducted a population-based study of pleural mesothelioma patients with occupational histories and measured asbestos lung burdens in occupationally exposed workers and in the general population. The relationship between lung burden and risk, particularly at environmental exposure levels, will enable future mesothelioma rates in people born after 1965 who never installed asbestos to be predicted from their asbestos lung burdens. METHODS: Following personal interview asbestos fibres longer than 5 µm were counted by transmission electron microscopy in lung samples obtained from 133 patients with mesothelioma and 262 patients with lung cancer. ORs for mesothelioma were converted to lifetime risks. RESULTS: Lifetime mesothelioma risk is approximately 0.02% per 1000 amphibole fibres per gram of dry lung tissue over a more than 100-fold range, from 1 to 4 in the most heavily exposed building workers to less than 1 in 500 in most of the population. The asbestos fibres counted were amosite (75%), crocidolite (18%), other amphiboles (5%) and chrysotile (2%). CONCLUSIONS: The approximate linearity of the dose-response together with lung burden measurements in younger people will provide reasonably reliable predictions of future mesothelioma rates in those born since 1965 whose risks cannot yet be seen in national rates. Burdens in those born more recently will indicate the continuing occupational and environmental hazards under current asbestos control regulations. Our results confirm the major contribution of amosite to UK mesothelioma incidence and the substantial contribution of non-occupational exposure, particularly in women

    Developing A Personal Decision Support Tool for Hospital Capacity Assessment and Querying

    Full text link
    This article showcases a personal decision support tool (PDST) called HOPLITE, for performing insightful and actionable quantitative assessments of hospital capacity, to support hospital planners and health care managers. The tool is user-friendly and intuitive, automates tasks, provides instant reporting, and is extensible. It has been developed as an Excel Visual Basic for Applications (VBA) due to its perceived ease of deployment, ease of use, Office's vast installed userbase, and extensive legacy in business. The methodology developed in this article bridges the gap between mathematical theory and practice, which our inference suggests, has restricted the uptake and or development of advanced hospital planning tools and software. To the best of our knowledge, no personal decision support tool (PDST) has yet been created and installed within any existing hospital IT systems, to perform the aforementioned tasks. This article demonstrates that the development of a PDST for hospitals is viable and that optimization methods can be embedded quite simply at no cost. The results of extensive development and testing indicate that HOPLITE can automate many nuanced tasks. Furthermore, there are few limitations and only minor scalability issues with the application of free to use optimization software. The functionality that HOPLITE provides may make it easier to calibrate hospitals strategically and/or tactically to demands. It may give hospitals more control over their case-mix and their resources, helping them to operate more proactively and more efficiently.Comment: 33 pages, 11 tables, 17 figure

    Analytical Techniques to Support Hospital Case Mix Planning

    Full text link
    This article introduces analytical techniques and a decision support tool to support capacity assessment and case mix planning (CMP) approaches previously created for hospitals. First, an optimization model is proposed to analyse the impact of making a change to an existing case mix. This model identifies how other patient types should be altered proportionately to the changing levels of hospital resource availability. Then we propose multi-objective decision-making techniques to compare and critique competing case mix solutions obtained. The proposed techniques are embedded seamlessly within an Excel Visual Basic for Applications (VBA) personal decision support tool (PDST), for performing informative quantitative assessments of hospital capacity. The PDST reports informative metrics of difference and reports the impact of case mix modifications on the other types of patient present. The techniques developed in this article provide a bridge between theory and practice that is currently missing and provides further situational awareness around hospital capacity.Comment: 20 pages, 11 tables, 6 figure

    DMSP dynamics in marine coralline algal habitats

    Get PDF
    Dimethylsulphoniopropionate (DMSP) is a dimethylated sulphur compound that appears to be produced by most marine algae and is a major component of the marine sulphur cycle. The majority of research to date has focused on the production of DMSP and its major breakdown product, the climatically important gas dimethylsulphide (DMS) (collectively DMS/P), by phytoplankton in the open ocean. A number of functions for intracellular DMSP (DMSPi) in phytoplankton have been identified and the cycling of DMS/P appears to be critical for ecosystem function. However, mechanisms for the production and release of DMS/P in the coastal ocean are poorly understood, despite the region’s economic and ecological importance. Coralline algal habitats (e.g. maerl beds, coral reefs, seagrass meadows, kelp forests) are distributed throughout the coastal oceans worldwide. Their three-dimensional structure supports high biodiversity and provides numerous services, generating considerable economic wealth. DMSPi in coralline algae is known to be high, thus coralline algal habitats may be critical components of the coastal sulphur cycle. This research aimed to improve our understanding of the production of DMS/P by coralline algal habitats by investigating (1) natural spatiotemporal variation and (2) the influence of environmental pressures. This was achieved through a number of laboratory and field-based studies, utilising modern and well-established techniques. The first objective of this research was to better understand the photosynthesis of red coralline algae (Chapter 3), as the algal precursor to DMSPi is methionine, a product of photosynthesis. The photosynthetic characteristics of coralline algae exhibited acclimation to changing light conditions (e.g. over a diurnal cycle or between natural and static lighting conditions). Further, for the species tested, coralline algae are often subjected to light-saturating natural conditions, therefore requiring efficient photo-protective mechanisms, which may include DMSPi regulation. On a global scale, DMSPi in coralline algae may decline with latitude, reinforcing the role of DMSPi as an antioxidant (Chapter 4). At smaller spatial scales, DMS/P production, release and recycling mechanisms were apparent in a number of habitat types (Chapter 4). A strong seasonal trend in DMS/P was also observed at a Scottish maerl bed, driven by water temperature and cloud cover (Chapter 5). Annually averaged DMS and DMSP concentrations were 230% and 700% respectively higher than the open ocean, highlighting the potential importance of the coastal ocean in the marine sulphur cycle (Chapter 5). The influence of environmental pressures (decreased salinity, variable pH and grazing) on DMS/P production by coralline algal habitats was examined (Chapters 6 – 8). In agreement with the phytoplankton literature, a chronic, but not acute, reduction in salinity led to a significant decline in coralline algal DMSPi concentrations and a sinking of the surface epithelial cells but no apparent impact on photosynthesis (Chapter 6). In the naturally variable tropical reef environment, calcifying algae continually regulated DMSPi concentrations in response to the diurnal cycling of carbonate saturation state (Chapter 7), suggesting that DMSPi may be enhanced under low pH regimes to compensate for enhanced oxidant production. Under low pH conditions, cracks were observed between the surface epithelial cells of coralline algae, potentially allowing DMSPi to leak from the cells (Chapter 7). In the field, grazing by urchins appeared to facilitate the release of DMS/P from kelp in coralline algal habitats (Chapter 8). In the laboratory, DMSPi in coralline algae increased in response to chemical cues from grazers rather than direct grazing activity, as had been previously proposed. Prior to this research, little information was available on DMS/P concentrations in coralline algal habitats. The marine sulphur cycle may impact climate regulation and ecosystem function on a global scale. This research provides a comprehensive source of information on the importance of coralline algal habitats in the marine sulphur cycle by examining natural variability and potential changes in response to environmental perturbations. This work will form a baseline for continued research in this field, investigating, for example, the impact of multiple stressors on DMS/P production, release and recycling in coastal marine habitats

    Realistic assumptions about spatial locations and clustering of premises matter for models of foot-and-mouth disease spread in the United States

    Get PDF
    Spatially explicit livestock disease models require demographic data for individual farms or premises. In the U.S., demographic data are only available aggregated at county or coarser scales, so disease models must rely on assumptions about how individual premises are distributed within counties. Here, we addressed the importance of realistic assumptions for this purpose. We compared modeling of foot and mouth disease (FMD) outbreaks using simple randomization of locations to premises configurations predicted by the Farm Location and Agricultural Production Simulator (FLAPS), which infers location based on features such as topography, land-cover, climate, and roads. We focused on three premises-level Susceptible-Exposed-Infectious-Removed models available from the literature, all using the same kernel approach but with different parameterizations and functional forms. By computing the basic reproductive number of the infection (R0) for both FLAPS and randomized configurations, we investigated how spatial locations and clustering of premises affects outbreak predictions. Further, we performed stochastic simulations to evaluate if identified differences were consistent for later stages of an outbreak. Using Ripley's K to quantify clustering, we found that FLAPS configurations were substantially more clustered at the scales relevant for the implemented models, leading to a higher frequency of nearby premises compared to randomized configurations. As a result, R0 was typically higher in FLAPS configurations, and the simulation study corroborated the pattern for later stages of outbreaks. Further, both R0 and simulations exhibited substantial spatial heterogeneity in terms of differences between configurations. Thus, using realistic assumptions when de-aggregating locations based on available data can have a pronounced effect on epidemiological predictions, affecting if, where, and to what extent FMD may invade the population. We conclude that methods such as FLAPS should be preferred over randomization approaches
    • …
    corecore