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This Technical Appendix to Hornstein, Krusell, and Violante (2009) (HKV, hereafter)
contains a set of derivations that complement some of the results stated without proofs in
our main paper. In Section 1, we show that the matching model of Pissarides (1985) in
its version with heterogeneous productivities yields the same expression for the Mm ratio
as in the sequential search model (Section I.B in HKV). In Section 2, we derive the Mm
ratio in the sequential search model with endogenous e¤ort (Section II.A in HKV). Section 3
derives a detailed characterization of the search model with wage shocks during employment
but no on-the-job search (Section III in HKV). In Section 3.2, we derive the Mm ratio in a
model with returns to labor market experience (Section III in HKV). In Section 4, we show
that even if agents are risk-averse the implications for the Mm ratio are limited if agents
can self-insure through a risk-free asset (Section IV in HKV). For the model with directed
search, in Section 5 we derive an upper bound for the Mm ratio that is close to the Mm
ratio in the standard search model (Section V in HKV). In Section 6.1, we present the model
with on-the-job search, derive the Mm ratio, and closed-form solutions for the equilibrium
separation rate (Section VI.A in HKV). In Section 6.2, we show how to compute bounds for
the Mm ratio in the model with endogenous search e¤ort on the job (Section VI.B in HKV).
Section 6.3 describes how to derive the Mm ratio in a simple version of search models with
countero¤ers and wage tenure contracts (Section VI.C in HKV).

Unless noted otherwise all our environments are populated by ex-ante equal, risk-neutral,
in�nitely lived individuals who discount the future at rate r. Unemployed agents receive a
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utility �ow b which includes unemployment bene�ts and a value of leisure and home pro-
duction, net of disutility from being jobless and, unless explicitly modelled, net of search
e¤ort costs. Unemployed agents also receive job/wage o¤ers at the instantaneous rate �u,
and wages are drawn from a well-behaved distribution function F (w) with upper support
wmax. Draws are i.i.d. over time and across agents. Employed agents become unemployed
at the instantaneous rate �. Our environments di¤er according to whether wages remain
�xed while on the job; whether agents can a¤ect the wage o¤er arrival rate; whether search
is undirected or directed; and whether wage o¤ers arrive also during employment. We only
consider steady-state allocations.

1 Matching model

The matching model not only speci�es the search behavior of workers, but it also endogenizes
the wage o¤er arrival rate which is taken as given in the search model. A job, corresponding
to a �rm, can be either vacant or �lled. There is free entry of vacant �rms. The �ow
of contacts m between vacant jobs and unemployed workers is governed by an aggregate
matching technology m (u; v). Let the workers� contact rate be �u = m=u and the �rm�s
contact rate be �f = m=v. Upon meeting, worker and �rm jointly draw a value p, distributed
according to F (p) with upper support pmax; which determines �ow output of their potential
match. Once p is realized, they bargain over the match surplus in a Nash fashion and
determine the wage w (p).

The Nash rule for the wage establishes that

w (p) = �p+ (1� �) rU; (1)

where rU is the �ow value of unemployment, and � is the worker�s bargaining power.1

From the worker�s point of view, it is easy to see that:

rW (p) = w (p)� � [W (p)� U ]

rU = b+ �u

Z pmax

p�
[W (p)� U ] dF (p) ;

i.e., the value of employment is expressed in terms of the value p of the match drawn; similarly,
the optimal search strategy is expressed in terms of a reservation productivity p�: Rearranging
these two expressions, we arrive at an equation for the reservation productivity

p� = b+
�u�

r + �

Z pmax

p�
[p� p�] dF (p) ; (2)

where we have used the fact that p� = rU: Substituting (1) into (2), we obtain

w� = b+
�u
r + �

Z pmax

p�
[w (p)� w�] dF (p)

1This equation uses the free-entry condition of �rms that drives the value of a vacant job to zero. See, for
example, Pissarides (2000), Section 1.4, for a step-by-step derivation of this wage equation.
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Using the de�nition b = � �w in the last equation, we again obtain the formula for the mean-min
ratio in equation (2) of HKV.

2 Endogenous search e¤ort

Consider an extension of the baseline model where search e¤ort is endogenous. Let cu (�u) ;
with c0u > 0 and c00u > 0, be the e¤ort cost as a function of the o¤er arrival rate �u, the
endogenous variable chosen by the unemployed worker. The �ow values of employment and
unemployment are

rW (p) = w (p)� � [W (p)� U ]

rU = max
�u

�
b� cu (�u) + �u

Z pmax

p�
[W (p)� U ] dF (p)

�
:

The same derivations as in Section 2 in the main text lead to the reservation-wage equation

w� = b� cu (�ou) +
��u
r + �

( �w � w�) ; (3)

where �ou denotes the optimal individual choice, and �
�
u � �ou [1� F (w�)] : The �rst-order

condition for optimal search e¤ort is

c0u (�
o
u) =

1

r + �

Z wmax

w�
(w � w�) dF (z) : (4)

We follow Christensen et al. (2005) and choose the isoelastic functional form cu (�u) =

�u�
1+1=
u for the e¤ort cost, with  > 0 denoting the elasticity of the optimal search e¤ort

with respect to the expected return from search. Using the relationship between marginal
and average search cost which follows from this speci�cation, we arrive at the net return from
search relative to the average wage

b� cu (�ou)
�w

= �� ��u
r + �



1 + 

�
1� 1

Mm

�
: (5)

Combining (3) and (5), and rearranging, we obtain

Mm =

��u
r+�

1
1+ + 1

��u
r+�

1
1+ + �

;

which is equation (4) in HKV.

3 Imperfect correlation between wage and job value

3.1 Wage shocks during employment

In this section, we characterize the equilibrium of the search model with wage shocks while
employed. An employed agent receives a new wage at the instantaneous rate � and the new
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wage comes from the same distribution F that determines wage o¤ers when unemployed. We
�rst state the discrete-time approximation of the search model for a �xed and �nite length
of the time period. We then derive the continuous-time representation as the limit of the
discrete-time approximation when the length of the time period becomes arbitrarily small.
We show that the Bellman equations for the employment and unemployment values for the
continuous- and discrete-time version are the same. Our derivation of the mean-min ratio
for wage inequality is therefore independent of the time representation. We then show that
in the discrete-time version the �rst-order autocorrelation coe¢ cient of wages is one minus
the arrival rate of wage changes. Finally, we consider a variation of the baseline model
where wage shocks when employed come from a di¤erent distribution than wage shocks when
unemployed. In particular, we study the Mortensen and Pissarides (1994) environment where
unemployed workers on meeting a job always receive the highest wage.

3.1.1 Discrete time versus continuous time

The discrete-time approximations of the Bellman equations for the value of employment,
W (w), and unemployment, U , are

W (w) = w�+ e�r�
�
��

Z
max fW (z); Ug dF (z) + (1� ��)W (w)

�
; (6)

U = b�+ e�r�
�
�u�

Z
max fW (z); Ug dF (z) + (1� �u�)U

�
; (7)

where� is the length of the time interval, and �u� (��) is the probability that an (un)employed
worker receives a wage o¤er at the end of the interval�. Using the de�nition of the reservation
wage, W (w�) = U , and rearranging terms the value equations can be rewritten as

�
1� e�r�

�
W (w) = w�+ e�r�

�
��

Z wmax

w�
[W (z)�W (w)] dF (z)� ��F (w�) [W (w)� U ]

�
;

�
1� e�r�

�
U = b�+ e�r�

�
�u�

Z wmax

w�
[W (z)� U ] dF (z)

�
Dividing by the length of the time interval and taking the limit as � ! 0 we obtain the
continuous-time Bellman equations

rW (w) = w + �

Z wmax

w�
[W (z)�W (w)] dF (z)� �F (w�) [W (w)� U ] ; (8)

rU = b+ �u

Z wmax

w�
[W (z)� U ] dF (z) : (9)

Rather than studying the continuous-time limit of the search model with wage changes,
we can just use the discrete-time approximation and consider a unit length interval, � = 1.
In this case we obtain the following expressions for the value functions of being employed and
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unemployed:

(1� �)W (w) = w + �

�
�

Z wmax

w�
[W (z)�W (w)] dF (z)� �F (w�) [W (w)� U ]

�
(1� �)U = b+ ��u

Z wmax

w�
[W (z)� U ] dF (z) ;

where � � e�r � 1= (1 + �r). Note that we can rewrite these discrete-time value equations as

�r �W (w) = w + �

Z wmax

w�

�
�W (z)� �W (w)

�
dF (z)� �F (w�)

�
�W (w)� �U

�
(10)

�r �U = b+ �u

Z wmax

w�

�
�W (z)� �U

�
dF (z) ; (11)

where �W �W= (1 + �r) and �U � U= (1 + �r). Expressions (10) and (11) are formally equivalent
to the expressions (8) and (9) for the continuous-time value functions. Therefore, the results
for the mean-min ratio also apply for the discrete-time version of the paper.

3.1.2 The reservation wage

As a �rst step towards deriving the mean-min wage ratio for the continuous-time model we
characterize the reservation wage. For this purpose, evaluate the employment value expression
(8) at w� and use the de�nition of the reservation wage, W (w�) = U , to deliver

rU = w� + �

Z wmax

w�
[W (z)�W (w�)] dF (z) :

Now substitute the unemployment value expression (9) for the left-hand side and solve for
the reservation wage

w� = b+ (�u � �)
Z wmax

w�
[W (z)�W (w�)] dF (z) : (12)

Integration by parts on the right-hand side yieldsZ wmax

w�
[W (z)�W (w�)] dF (z) = [(W (z)�W (w�))F (z)]w

max

w� �
Z wmax

w�
W 0 (z)F (z) dz

= W (wmax)�W (w�)�
Z wmax

w�
W 0 (z)F (z) dz

=

Z wmax

w�
W 0 (z) [1� F (z)] dz: (13)

From the employment value expression (8) it follows that

W 0 (w) =
1

r + �
: (14)
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Hence the reservation-wage expression is

w� = b+
�u � �
r + �

Z wmax

w�
[1� F (z)] dz

= b+
(�u � �) [1� F �]

r + �

Z wmax

w�

�
1

1� F � �
F (z)

1� F �

�
dz (15)

with F � = F (w�).

3.1.3 The equilibrium wage distribution

We now construct the equilibrium wage distribution G (w) implied by the interaction of the
wage-o¤er distribution and the reservation wage. The measure of agents with wage below
w is (1� u)G (w) : Agents leave this stock because their wage changes and their new wage
is either less than the reservation wage or higher than the current wage. Agents enter this
stock if they were unemployed and receive an acceptable wage o¤er below w, or if they were
employed at wage above w and are forced to accept a lower wage; hence

(1� u)G (w) � fF (w�) + [1� F (w)]g
= fu�u + (1� u) [1�G (w)] �g [F (w)� F (w�)] : (16)

We can solve this expression for the equilibrium wage distribution as a function of the wage-
o¤er distribution:

G (w) =

�
�uu

� (1� u) + 1
�
[F (w)� F (w�)] : (17)

In steady state, the in�ows and out�ows from employment balance:

(1� u) �F (w�) = u�u [1� F (w�)] :

Using the expression for steady-state employment in (17) we obtain

G (w) =
F (w)� F (w�)
1� F (w�) : (18)

Thus, the equilibrium wage distribution with and without wage shocks during employment
are the same, namely the wage-o¤er distribution truncated at the reservation wage.

3.1.4 The mean-min ratio

Based on the equilibrium wage distribution we can calculate the average wage of employed
workers as

�w =

Z wmax

w�
w
dF (w)

1� F � =
wmax � w�F �
1� F � �

Z wmax

w�

F (z)

1� F �dz: (19)

Solving the average-wage expression (19) for the right-hand side integral term and substitut-
ing this term for the corresponding integral in the reservation-wage expression (15) yields

w� = b+
(�u � �) [1� F �]

r + �

�Z wmax

w�

1

1� F �dz + �w � w
max � w�F �
1� F �

�
= b+

(�u � �) [1� F �]
r + �

[ �w � w�] : (20)
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Using the de�nition of the replacement rate, b = � �w, we can solve equation (20) for the
reservation wage and obtain an expression for the mean-min ratio, that is, the ratio of average
wages to the reservation wage,

Mm =

(�u��)[1�F (w�)]
r+� + 1

(�u��)[1�F (w�)]
r+� + �

=

��u��+��
r+� + 1

��u��+��
r+� + �

; (21)

with ��u � (1� F �)�u and �� � �F �. This is equation (5) in Section III of HKV. Note that
as � goes to in�nity Mm goes to 1=�:

3.1.5 Wage persistence in the discrete-time model

It is straightforward to show that the equilibrium wage distribution for the discrete-time and
the continuous-time versions of the model are the same; we now work with the former. We
need the expected value of the cross-product of today�s and tomorrow�s wage, conditional on
being employed in both periods, to calculate the autocorrelation coe¢ cient. We proceed in
two steps: �rst, we obtain the value conditional on today�s wage, and then we integrate over
today�s wage to obtain the unconditional expectation. This delivers

E
�
w0wjw

�
= (1� �)w2 + �wE [ ~wj ~w � w�]
= (1� �)w2 + �w �w

E
�
w0w

�
= (1� �)E

�
w2
�
+ � �w2:

We can now de�ne the �rst-order autocorrelation coe¢ cient as

� =
(1� �)E

�
w2
�
+ � �w2 � �w2

V ar (w)

=
(1� �)

�
E
�
w2
�
� �w2

�
V ar (w)

= 1� �:

3.1.6 The mean-min ratio for a Mortensen-Pissarides environment

Suppose now that an unemployed worker who receives a wage o¤er always receives the highest
wage wmax, whereas wage changes of employed workers continue to be drawn from the distri-
bution F . We will show that the mean-min ratio that we previously derived for our baseline
model, equation (21), represents an upper bound for the mean-min ratio in the Mortensen
and Pissarides (1994) environment.

The value function equation for an employed worker, (8), remains unchanged, but the
value function equation for an unemployed worker is now

rU = b+ �u [W (w
max)� U ] : (22)

Following the same steps as in Section 3.1.2 we derive the modi�ed expression for the reser-
vation wage:

w� = b+
�u � �
r + �

[wmax � w�] + �

r + �

Z wmax

w�
F (z) dz: (23)
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The modi�ed steady-state expression characterizing the equilibrium wage distribution is now

(1� u)G (w) � fF (w�) + [1� F (w)]g (24)

= (1� u) [1�G (w)] � [F (w)� F (w�)] for w < wmax:

Note that there are no in�ows from the pool of unemployed since all unemployed workers
who receive wage o¤ers receive the highest wage. Thus, the equilibrium wage distribution for
w < wmax is

G (w) = F (w)� F (w�) : (25)

Since all unemployed workers receive the highest wage with probability one there is now a
mass point at w = wmax, that is, the cumulative density function is discontinuous at wmax.

Integrating the wage with respect to the equilibrium wage distribution then yields the
average wage

�w =

Z wmax

w�
wdF (w) + wmaxF (w�) = wmax + F (w�) (wmax � w�)�

Z wmax

w�
F (w) dw: (26)

Solving the average-wage expression (26) for the right-hand side integral term and substitut-
ing this term for the corresponding integral in the reservation-wage expression (23) yields�

1 +
�u � (1� F �) �

r + �

�
w� =

�
�� �

r + �

�
�w +

�u + �F
�

r + �
wmax

>

�
�+

�u � � (1� F �)
r + �

�
�w: (27)

Note that the last inequality implies that the mean-min ratio for this setup is bounded above
by that of the baseline economy with wage shocks given in (21).

3.2 Returns to experience

Suppose that workers enter the labor market with a level of human capital (experience)
normalized to one. At rate �, an employed worker with experience level h sees her experience
jump to level h0 = h (1 + �g) : During unemployment experience remains unchanged. In order
to keep the stock of experience �nite, we also assume that workers exit from the labor force at
rate �: Let F (w) be the wage o¤er distribution, where the wage is �per unit of experience�.

The value of employment and unemployment are:

rW (w; h) = wh+ �
�
W (w; h0)�W (w; h)

�
� � [W (w; h)� U (h)]� �W (w; h) (28)

rU (h) = bh+ �u

Z wmax

w�
[W (z; h)� U (h)] dF (z)� �U (h) : (29)

Clearly, these two equations are homogeneous in h; and therefore we can rewrite them as:

(r + �)W (w) = w + �W (w)� � [W (w)� U ] (30)

(r + �)U = b+ �u

Z wmax

w�
[W (z)� U ] dF (z) ; (31)
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where � � ��g is the expected instantaneous growth rate of experience.
From the value of work, we obtain

W (w) =
w + �U

r + �+ � � � ; (32)

and since W (w�) = U , we arrive at

w� = (r + �� �)U: (33)

Evaluating (30) at w�, and equating it to (31), we see that

w� + �U = b+ �u

Z wmax

w�
[W (z)� U ] dF (z) :

Inserting (32) inside the integral into the above equation, and using (33) to substitute
out U , we arrive at

w� = b+ �u

Z wmax

w�

�
z � w�

r + �+ � � �

�
dF (z)� �

r + �� �w
�:

Integrating and rearranging yields

Mm =

��u
r+�+��� +

1
1��=(r+�)

��u
r+�+��� + �

;

which is the expression for the Mm ratio in equation (8) in the main text.

4 Risk aversion

We study two search models with risk averse agents. In the �rst model, workers have CRRA
utility but no access to storage. In the second model, workers have CARA utility and access
to borrowing/saving.

4.1 Constant relative risk aversion

Let u (c) be the utility of consumption, with u0 > 0, and u00 < 0: To make progress analytically,
we assume that workers have no access to storage, i.e., c = w when employed, and c = b

when unemployed. Then, the reservation-wage equation becomes

u (w�) = u (� �w) +
��u
r + �

[Ew� [u (w)]� u (w�)] ; (34)

with Ew� [u (w)] = E [u (w) jw � w�]. A second-order Taylor expansion of u (w) around the
conditional mean �w yields

u (w) ' u ( �w) + u0 ( �w) (w � �w) +
1

2
u00 ( �w) (w � �w)2 :
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Take the conditional expectation of both sides of the above equation and arrive at

Ew� [u (w)] ' u ( �w) +
1

2
u00 ( �w) var (w) ; (35)

where var (w) denotes the wage variance. Let u (w) belong to the CRRA family, with �
representing the coe¢ cient of relative risk aversion. Then, using (35) in (34), and rearranging,
we obtain

Mm '
"
��u
r+�

�
1 + 1

2 (� � 1) �cv
2
�
+ �1��

��u
r+� + 1

# 1
��1

; (36)

which is equation (11) in the main text. It is easy to derive third- and fourth-order approxi-
mations of the reservation-wage equation involving the coe¢ cients of skewness and kurtosis.
In Hornstein, Krusell, and Violante (2007) we show that our conclusions remain extremely
robust to higher-order approximations.

4.2 Constant absolute risk aversion

Even if workers are risk-averse, access to a risk-free asset for self-insurance purposes brings
the equilibrium wage distribution quite close to the full-insurance environment that we study
in our paper. As an example we use the environment studied by Shimer and Werning (2007)
who derive the optimal reservation-wage policies for risk-averse workers that may or may not
have access to a risk-free asset.

Preferences are of the constant absolute risk aversion variety

E

Z 1

0
e�rtu [c (t)] dt and u (c) = �e��c with � > 0: (37)

Unlike all other environments studied in our paper, if workers accept a wage o¤er w they
will receive that wage for a �xed time T . Thus separations are deterministic, not random.
Normalizing the average wage rate at one, �w = 1, we can rewrite the reservation wage for
workers with access to a risk-free asset with rate of return r, equation (4) in Shimer and
Werning (2007), as an expression for the Mm ratio:

Mmsave =

�
�+

�u [1� F (w�)]
r�

�
1 +

Z 1

w�
u [r�T (w � w�)]

dF (w)

1� F (w�)

���1
; (38)

where �T =
R t
0 e

�rsds denotes the present value of one unit of income with remaining job
duration T . Analogously, the Mm ratio for workers who cannot save can be derived from
equation (7) of Shimer and Werning (2007):

Mmaut =

�
�+

1

�
log

�
1 + �T�u [1� F (w�)]

�
1 +

Z 1

w�
u (w � w�) dF (w)

1� F (w�)

����1
: (39)

We approximate the accepted wage distribution, H (dw) = F (dw) [1� F (w�)], with a
gamma distribution with density function

h (w;w�; �; �) =

�
w � w�
�

���1
exp

�
�w � w

�

�

�
= [�� (�)] for w � w�: (40)
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The mean and standard deviation of wages for this distribution are

�w = w� + �� and �w = �
p
�: (41)

This allows us to solve for the integral terms in equations (38) and (39) usingZ 1

w�
u [r�T (w � w�)] dH (w) = � (1 + ��r�T )�� :

We now derive the Mm ratios that are implied by the following observations: a monthly
interest rate r = 0:0041, an e¤ective job-�nding rate ��u = [1� F (w�)]��u = 0:43, a replace-
ment rate � = 0:4, and an unemployment rate u = 0:065. The job-�nding rate and the
unemployment rate jointly imply a �xed job duration T = 33 months. Given that we have
normalized the average wage at one, the coe¢ cient of absolute risk aversion is equal to the
coe¢ cient of relative risk aversion at the average wage. We consider the values � = 1 and
� = 10. For either of the two cases� access or no access to a risk-free asset� conditional on
the normalization of average wages we have two expressions for the Mm ratio: equation (41)
and either equation (38) with access to a risk-free asset or equation (39) without access to a
risk-free asset. Conditional on the parameter � of the gamma distribution we solve these two
equations for the mean-min ratio and the implied distribution parameter � and coe¢ cient of
variation, �= �w.

In Figure 1 we plot the implied Mm ratio (with and without savings) and the wage
distribution�s coe¢ cient of variation against an assumed value of the gamma distribution
parameter � between 0 and 5.

Two results stand out. First, access to a risk-free asset signi�cantly reduces the Mm
ratio. Second, observations on the coe¢ cient of variation for wage distributions provide a
signi�cant upper bound for wage inequality. Without access to a risk-free asset the implied
Mm ratios can be large: up to 1:7 with a risk aversion of � = 10 and � = 5. With access to a
risk-free asset the impliedMm ratio drops substantially, even for a high level of risk aversion:
from 1:7 to about 1:12. Finally, the Mm ratio is increasing in the parameter �, but so is
the coe¢ cient of variation of the underlying wage distribution. Based on evidence provided
in Hornstein, Krusell, and Violante (2007) we consider the coe¢ cient of variation for residual
wage inequality to be strictly less than 0:5. This signi�cantly limits the magnitude of the
parameter � that is consistent with the observed coe¢ cient of variation. For example, with
no access to a risk-free asset and a risk aversion of � = 10, � has to be strictly less than one
and the implied Mm ratio is less than 1:6. Alternatively, with the same risk aversion, but
access to a risk-free asset, � has to be strictly less than three and the Mm ratio is less than
1:1.

5 Directed search

The description of the directed search model follows Moen (1997) and Rogerson, Shimer and
Wright (2005). There is free entry of vacant �rms. Firms post wages and workers observe the
wage distribution and direct their search to the most attractive �rm. A high wage wi posted
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Figure 1: Frictional wage dispersion with CARA utility
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by �rm i attracts more applicants, which reduces workers�contact rate �i. In equilibrium,
unemployed workers are indi¤erent about where to apply, and therefore if we denote by Ui
the value of an unemployed worker directing her search to generic �rm i, we have Ui = U for
all i:

More speci�cally, we have

rUi = b+ �i [W (wi)� Ui] ;

where W (wi) is the value of a worker employed by �rm i

rW (wi) = wi � � [W (wi)� U ] :

Combining these two equations, and using the equality Ui = U yields

rUi =
b (r + �) + �iwi
r + � + �i

: (42)

From the equilibrium condition it follows that workers are indi¤erent between applying at
�rms posting the lowest wage and �rms posting the average wage, so we obtain:

b (r + �) + �minwmin
r + � + �min

=
b (r + �) + �� �w

r + � + ��
: (43)

Collecting terms and multiplying through, we arrive at�
r + � + p

�
��
��
p (�min)wmin � [r + � + p (�min)] p

�
��
�
�w = (r + �)

�
p (�min)� p

�
��
��
� �w;

and then dividing through by wmin yields�
(r + � + �min) ��+ � (r + �)

�
�min � ��

��
Mm =

�
r + � + ��

�
�min

= (r + � + �min) ��+ (r + �)
�
�min � ��

�
:

Rearranging, we have"
(r + � + �min) ��

(r + �)
�
�min � ��

� + �#Mm =
(r + � + �min) ��

(r + �)
�
�min � ��

� + 1;
and collecting terms we arrive at

Mm =
�+ 1

�+ �
; (44)

where

� �
�
1 +

�min
r + �

� ��

�min � ��
: (45)

In equilibrium, �min � �� since �min is the job-�nding rate associated with searching for
jobs with the lowest wage. The mean-min ratio Mm is decreasing in �, and the function �
is decreasing in �min :

@�

@�min
= �

���
�min � ��

�2 �1 + ��

r + �

�
< 0: (46)
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Therefore Mm is increasing in �min, but note that there is an upper bound to the function
� (�min)

lim
�min!1

� (�min) =
��

r + �
:

Therefore

Mm �
1 +

��
r+�

�+
��
r+�

; (47)

which is the inequality in equation (10) in HKV.

6 On-the-job search

6.1 The job ladder model

We generalize the canonical search model and turn it into the job ladder model outlined by
Burdett (1978). A worker employed with wage ŵ encounters new job opportunities w at rate
�e. These opportunities are randomly drawn from the wage o¤er distribution F (w) and they
are accepted if w > ŵ: The equations describing the value of employment and unemployment
are:

rW (w) = w + �e

Z
max fW (z)�W (w) ; 0g dF (z)� � [W (w)� U ]

rU = b+ �u

Z
max fW (z)� U; 0g dF (z) :

Without loss of generality, and motivated by what equilibrium �rm behavior would dic-
tate, we assume that the wage-o¤er distribution is such that unemployed workers accept all
wage o¤ers: F (w�) = 0. A worker can always reject a wage o¤er and keep the current wage.
The worker may lose the current job at an exogenous separation rate �.

6.1.1 The reservation wage

Workers continue to follow reservation-wage strategies and the Bellman equations can be
rewritten as

rW (w) = w + �e

Z wmax

w
[W (z)�W (w)] dF (z)� � [W (w)� U ] (48)

rU = b+ �u

Z wmax

w�
[W (z)� U ] dF (z) : (49)

Evaluate the employment value equation (48) at w�, using the reservation-wage property,
W (w�) = U , and the unemployment value expression (49) to obtain

rU = b+ �u

Z wmax

w�
[W (z)�W (w�)] dF (z)

= w� + �e

Z wmax

w�
[W (z)�W (w�)] dF (z) :
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We can solve this expression for the reservation wage

w� = b+ (�u � �e)
Z wmax

w�
[W (z)�W (w�)] dF (z) : (50)

As with equation (12), we can integrate the right-hand side integral by parts, as in (13), and
obtain the reservation-wage equation

w� = b+ (�u � �e)
Z wmax

w�
W 0 (z) [1� F (z)] dz: (51)

Note that di¤erentiating the employment value equation (48) with respect to the current
wage yields

W 0 (w) =
1

r + � + �e [1� F (w)]
: (52)

Substituting (52) in (51) we can rewrite the reservation wage as

w� = b+ (�u � �e)
Z wmax

w�

1� F (z)
r + � + �e [1� F (z)]

dz: (53)

6.1.2 The equilibrium wage distribution

We now construct the equilibrium wage distribution G (w) implied by the interaction of the
wage-o¤er distribution and the reservation wage.

The measure of agents with wage below w is (1� u)G (w) : Agents leave this stock because
(1) they are separated at rate �, or (2) they receive an outside o¤er which they accept at rate
�e [1� F (w)]. Workers enter this stock if they were unemployed and receive a wage o¤er
below w. In a steady state the in�ows and out�ows balance:

(1� u)G (w) f� + �e [1� F (w)]g = u�uF (w) :

We can solve this expression for the equilibrium wage distribution as a function of the wage-
o¤er distribution:

G (w) =
�uu

1� u �
F (w)

� + �e [1� F (w)]
: (54)

In steady state, if all the job o¤ers are above w� so that F (w�) = 0,

u�u = (1� u)�:

Hence

G (w) =
�F (w)

� + �e [1� F (w)]
(55)

and

1�G (w) =
� + �e

� + �e [1� F (w)]
[1� F (w)]

' r + � + �e
r + � + �e [1� F (w)]

[1� F (w)] ; (56)

because r is �second order�compared to � and �e:
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6.1.3 The mean-min ratio

The average wage is

�w =

Z wmax

w�
wdG (z) = [wG (w)]w

max

w� �
Z wmax

w�
G (z) dz

= wmax �
Z wmax

w�
G (z) dz

= [wmax � w�] + w� �
Z wmax

w�
G (z) dz

= w� +

Z wmax

w�
[1�G (z)] dz: (57)

Solve the wage distribution expression (56) for 1 � F and use it in the reservation-wage
expression (53) to obtain

w� ' b+ �u � �e
r + � + �e

Z wmax

w�
[1�G (z)] dz:

Finally substituting for the integral term from the average-wage equation (57) we can solve
for the mean-min ratio:

w� ' � �w +
�u � �e
r + � + �e

( �w � w�) )

Mm '
�u��e
r+�+�e

+ 1
�u��e
r+�+�e

+ �
: (58)

Equation (58) corresponds to equations (14) in Section VI.A of HKV.

6.1.4 Turnover rates in the basic on-the-job search model

We show how to derive closed-form solutions for the average tenure and separation rate in
the equilibrium of the standard model with on the job search.

The job-to-job transition rate for employed workers is

� = �e

Z wmax

w�
[1� F (w)] dG (w) : (59)

Following Nagypál (2005), and integrating the right hand side by parts, yields

� = �e � �e
Z wmax

w�
F (w) dG (w)

= �e � �e [F (w)G (w)]w
max

w� + �e

Z wmax

w�
G (w) dF (w)

= �e

Z wmax

w�
G (w) dF (w)

= �e�

Z wmax

w�

F (w)

� + �e [1� F (w)]
dF (w) : (60)
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The last step uses equation (55) for G. Now change the variable of integration to z = F (w),
and we obtainZ 1

0

z

� + �e [1� z]
dz = ��e fzg

1
0 + (�e + �) flog [� + �e (1� z)]g

1
0

�2e

= ��e + (�e + �) (log � � log (� + �e))
�2e

=
(�e + �) log

�
�+�e
�

�
�2e

� 1

�e
: (61)

Hence, the job-to-job separation rate is

� =
� (�e + �) log

�
�+�e
�

�
�e

� � (62)

which is equation (15) in HKV.

6.2 On-the-job search with endogenous e¤ort choice

We now derive the results stated in Section 7.2 formally. Based on the derivations in
Mortensen (2007), we generalize the Christensen et al. (2005) model in order to allow for
asymmetric search cost functions o¤ and on the job. Let the utility cost of attaining a con-
tact rate �i in employment state i 2 fu; eg be ci(�i), with c0i > 0 and c00i > 0. In particular,
we will assume that the search cost function is isoelastic: ci (�i) = �i�

1+1=
i , with  > 0.

Optimal search e¤ort choice will deliver a scalar �ou for the unemployed worker and a policy
function �oe(w) for the employed worker.

A worker employed at a job with wage w accepts any job o¤er with a higher wage. The
�ow values of unemployment and employment are, respectively,

rU = b� cu (�ou) + �ou
Z wmax

w�
[W (z)� U ] dF (z) ; (63)

rW (w) = w � cw [�oe (w)] + �oe (w)
Z wmax

w
[W (z)�W (w)] dF (z)� � [W (w)� U ] :(64)

The �rst-order condition for optimal search e¤ort for an unemployed worker and for
a worker employed at wage w that characterize the search e¤ort choices f�ou; �oe (w)g are,
respectively,

c0e [�
o
e (w)] =

Z wmax

w
[W (z)�W (w)] dF (z) (65)

c0u (�
o
u) =

Z wmax

w�
[W (z)� U ] dF (z) : (66)

By simple inspection of (65), it is immediate that �oe (w) is decreasing in w:
In steady state, �ows for the workers employed at wage w or lower satisfy

(1� u)
�
G(w)� + [1� F (w)]

Z w

w�
�oe(z)dG(z)

�
= u�ouF (w); (67)
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and �ows in and out of unemployment satisfy the relation

u�ou = (1� u)�:

Combining the last two equations we obtain

�F (w) = G(w)� + [1� F (w)]G (w) ��e (w) ;

where
��e (w) �

R w
w� �

o
e (w) dG (w)

G (w)

is the average search e¤ort for workers with wages less than w. From (67) it is easy to see
that the equilibrium wage distribution G (w) can be expressed as a function of the wage-o¤er
distribution F (w), i.e., through

1�G (w) =
�
� + ��e (w)

�
[1� F (w)]

� + ��e (w) [1� F (w)]
'
�
r + � + ��e (w)

�
[1� F (w)]

r + � + ��e (w) [1� F (w)]
; (68)

where the approximation sign comes from r ' 0. This is exactly the same approximation as
the one we used in deriving equation (56).

Note that the right-hand side of (68) is increasing in ��e (w). Since we have derived that
search e¤ort is decreasing in w, we can establish the following ranking:

�w� � ��e (w) � �w � �wmax = 0;

where, for notational simplicity, we have denoted �oe (w) by �w: The above inequalities, in
conjunction with (68), imply

(r + � + �w�) [1� F (w)]
r + � + �w [1� F (w)]

� 1�G (w) � (r + � + �w) [1� F (w)]
r + � + �w [1� F (w)]

(69)

� (r + � + �wmax) [1� F (w)]
r + � + �w [1� F (w)]

:

Now we derive the reservation-wage equation for this model. Going back to the value
function in (64), the derivative of the worker value function (using the Envelope Theorem) is

W 0 (w) =
1

r + � + �w [1� F (w)]
:

Integrating by parts and using the derivative above yieldsZ wmax

w
[W (z)�W (w)] dF (z) =

Z wmax

w

[1� F (z)]
r + � + �z [1� F (z)]

dz: (70)

The de�nition of the reservation wage, W (w�) = U , implies that

w� � ce (�w�) + �w�
Z wmax

w�
[W (z)�W (w�)] dF (z) (71)

= b� cu (�u) + �u
Z wmax

w�
[W (z)�W (w�)] dF (z) ;
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where for notational simplicity we denoted �ou by �u: Since the search cost functions are
isoelastic, from (65) we obtain

ce (�w�) = �e�
1+1=
w� = �w�

�


1 + 

�
c0e (�w�) = �w�

�


1 + 

�Z wmax

w�
[W (z)�W (w�)] dF (z)

(72)
for the optimal search cost when employed; similarly, from (66) we arrive at

cu (�u) = �u

�


1 + 

�Z wmax

w�
[W (z)�W (w�)] dF (z) (73)

for the optimal search cost when unemployed. Substituting (73) and (72) into (71) and using
(70) we arrive at

w� = b+
�u � �w�
1 + 

Z wmax

w�

1� F (z)
r + � + �z [1� F (z)]

dz: (74)

Now we use the inequalities in (69) to construct bounds for the Mm ratio. Putting
together (74) and (69) we obtain

w� � � �w +
�u � �w�

(1 + ) (r + � + �w�)

Z wmax

w�
[1�G (z)] dz

= � �w +
�u � �w�

(1 + ) (r + � + �w�)
[ �w � w�] (75)

and, similarly,

w� � � �w +
�u � �w�

(1 + ) (r + � + �wmax)

Z wmax

w�
[1�G (z)] dz

= � �w +
�u � �w�

(1 + ) (r + �)
[ �w � w�] : (76)

Inequalities (75) and (76) yield the following bounds for the Mm ratio

�u��w�
(1+)(r+�) + 1

�u��w�
(1+)(r+�) + �

�Mm �
�u��w�

(1+)(r+�+�w� )
+ 1

�u��w�
(1+)(r+�+�w� )

+ �
;

as in equation (16) in HKV.
We can proceed in a similar manner to construct bounds on search costs. Combining (73)

with (70), and using the inequalities in (69), we arrive at

�u
r + � + �w�

�


1 + 

��
1� 1

Mm

�
� cu (�u)

�w
� �u
r + �

�


1 + 

��
1� 1

Mm

�
;

which is the expression reported in equation (17) in HKV.
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6.3 On-the-job search with countero¤ers

This model is a simpli�ed version of Cahuc, Postel-Vinay and Robin (2006) without heteroge-
neous �rms�and workers�productivities. See also Mortensen (2005) for a similar presentation.

Consider an economy with ex-ante equal, risk-neutral in�nitely lived workers who discount
the future at rate r: There is only one type of �rm with productivity p: Let U be the value of
unemployment and W (w) be the value of employment at wage w: If an unemployed worker
is contacted by a �rm, Nash bargaining yields a wage w� which solves

W (w�) = U + � [W (p)� U ] : (77)

However, if an employed worker is contacted by another �rm, the two �rms compete in a
Bertrand fashion and bid up her wage to p:

The �ow value of unemployment is

rU = b+ �u [W (w�)� U ] ; (78)

where
rW (w�) = w� + �e [W (p)�W (w�)]� � [W (w�)� U ] : (79)

The valueW (p) is the value of employment after being contacted by a poaching �rm. Because
of Bertrand competition among �rms, after the contact, the wage jumps to p, and hence

rW (p) = p� � [W (p)� U ] : (80)

From equation (77) , we obtain

(1� �) [W (w�)� U ] = � [W (p)�W (w�)] : (81)

In what follows, we obtain closed-form solutions for the RHS and LHS of the above equation.
From equation ( 80) we arrive at

(r + �) [W (p)� U ] = p� rU = p� b� �u [W (w�)� U ]
= p� b� �u� [W (p)� U ] ;

where we �rst substitute (78) for rU , and then use (77). Collecting terms, we arrive at

W (p)� U = p� b
r + � + ��u

: (82)

Evaluating (80) at w = w�; we have

(r + �) [W (w�)� U ] = w� + �e [W (p)�W (w�)]� rU
= w� + �e [W (p)�W (w�)]� b� �u [W (w�)� U ] :

Using (81), we arrive at

W (w�)� U = � (w� � b)
� (r + � + �u)� (1� �)�e

: (83)
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Using (82) and (83) into the Nash bargaining relation (77) yields

� (w� � b)
� (r + � + �u)� (1� �)�e

=
� (p� b)

r + � + ��u

and through simple algebra one obtains

w� = b+
� (r + � + �u)� (1� �)�e

r + � + ��u
(p� b) ; (84)

which is the reservation wage equation (18) of HKV.
We now show that, in a plausible parameterization of the Postel-Vinay and Robin (2002)

version of this model with � = 0, the reservation wage can be negative. Let " (w�) and " (p)
be the fractions of employment at wage w� and p, respectively. From the steady-state �ows,
it is easy to see that

" (w�) =
�

�e + �
and " (p) =

�e
�e + �

:

As a result, the average wage is

�w =
�

�e + �
w� +

�e
�e + �

p:

Now set � = 0 and use the above equation to substitute out p from (84). After simple
manipulations, one obtains

w� =
(r + � + �e) �� (�e + �)

r
�w � 1� �

r
(1� �) :

In the baseline parameterization, r = 0:0041, � = 0:03 and � = 0:4 which implies that w� < 0
independently of �e.
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