185 research outputs found

    Intestinal RORrt-generated Th17 cells control type 2 diabetes: A first antidiabetic target identified from the host to microbiota crosstalk

    Get PDF
    The recent discovery of the role played by gut microbiota on the control of metabolic disease opens novel routes for the identification of the causes of type 2 diabetes and obesity. This paradigm could explain the infiltration, by innate and adaptive immune cells, of the adipose tissue, liver, and islets of Langerhans which is responsible for the metabolic inflammation state that leads to impaired insulin action and secretion, and therefore, type 2 diabetes. The identification of the causal role of circulating lipopolysaccharides LPS and peptidoglycans in the development of metabolic inflammation, due to an increased intestinal permeability, led to the leaky gut hypothesis. In addition, whole live bacteria were found in metabolic tissues establishing a tissue microbiota which upon a fat-enriched diet becomes dysbiotic. The process of intestinal bacterial translocation was responsible for the onset of a leaky gut causal to the disease. The translocation of selective sets of intestinal bacteria to the blood could be identified. These blood bacterial 16SrRNA-DNA sequences are considered as biomarkers of the bacterial translocation process. An increased of the corresponding bacterial DNA concentration was predicting the occurrence of type 2 diabetes. Associated to the dysbiotic microbiota translocation, an impaired intestinal immune defense was identified as a cause of the selective leaky gut. The change in small intestine mucosal microbiota induced by a fat-enriched diet reduces the number of IL17-secreting CD4 T cells within the lamina propria of the intestine. This loss of IL17-secreting CD4 T cells is the consequence of an impaired capacity of intestinal antigen presenting cells to activate and trigger the expression of RORgt and the production of IL17 by CD4 T cells. Altogether, an impaired intestinal immune defense, notably the reduced differentiation of RORgt expressing IL17-producing CD4 T cells, favors the onset of a leaky gut leading to the translocation of bacterial factors and live bacteria towards tissues triggering metabolic inflammation; insulin resistance and type 2 diabetes. Hence, the triggering of intestinal defense surrounding RORgt pathway now appears as a potential target mechanism for the control of type 2 diabetes

    PPARÎł ligands switched high fat diet-induced macrophage M2b polarization toward M2a thereby improving intestinal Candida elimination.

    Get PDF
    International audienceObesity is associated with a chronic low-grade inflammation that predisposes to insulin resistance and the development of type 2 diabetes. In this metabolic context, gastrointestinal (GI) candidiasis is common. We recently demonstrated that the PPARγ ligand rosiglitazone promotes the clearance of Candida albicans through the activation of alternative M2 macrophage polarization. Here, we evaluated the impact of high fat diet (HFD)-induced obesity and the effect of rosiglitazone (PPARγ ligand) or WY14643 (PPARα ligand) both on the phenotypic M1/M2 polarization of peritoneal and cecal tissue macrophages and on the outcome of GI candidiasis. We demonstrated that the peritoneal macrophages and the cell types present in the cecal tissue from HF fed mice present a M2b polarization (TNF-α(high), IL-10(high), MR, Dectin-1). Interestingly, rosiglitazone induces a phenotypic M2b-to-M2a (TNF-α(low), IL-10(low), MR(high), Dectin-1(high)) switch of peritoneal macrophages and of the cells present in the cecal tissue. The incapacity of WY14643 to switch this polarization toward M2a state, strongly suggests the specific involvement of PPARγ in this mechanism. We showed that in insulin resistant mice, M2b polarization of macrophages present on the site of infection is associated with an increased susceptibility to GI candidiasis, whereas M2a polarization after rosiglitazone treatment favours the GI fungal elimination independently of reduced blood glucose. In conclusion, our data demonstrate a dual benefit of PPARγ ligands because they promote mucosal defence mechanisms against GI candidiasis through M2a macrophage polarization while regulating blood glucose level

    Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment

    Get PDF
    A fat-enriched diet modifies intestinal microbiota and initiates a low-grade inflammation, insulin resistance and type-2 diabetes. Here, we demonstrate that before the onset of diabetes, after only one week of a high-fat diet (HFD), live commensal intestinal bacteria are present in large numbers in the adipose tissue and the blood where they can induce inflammation. This translocation is prevented in mice lacking the microbial pattern recognition receptors Nod1 or CD14, but overtly increased in Myd88 knockout and ob/ob mouse. This ‘metabolic bacteremia’ is characterized by an increased co-localization with dendritic cells from the intestinal lamina propria and by an augmented intestinal mucosal adherence of non-pathogenic Escherichia coli. The bacterial translocation process from intestine towards tissue can be reversed by six weeks of treatment with the probiotic strain Bifidobacterium animalis subsp. lactis 420, which improves the animals' overall inflammatory and metabolic status. Altogether, these data demonstrate that the early onset of HFD-induced hyperglycemia is characterized by an increased bacterial translocation from intestine towards tissues, fuelling a continuous metabolic bacteremia, which could represent new therapeutic targets

    Getting to Know the Gut Microbial Diversity of Metropolitan Buenos Aires Inhabitants

    Get PDF
    In recent years, the field of immunology has been revolutionized by the growing understanding of the fundamental role of microbiota in the immune system function. The immune system has evolved to maintain a symbiotic relationship with these microbes. The aim of our study was to know in depth the uncharacterized metagenome of the Buenos Aires (BA) city population and its metropolitan area, being the second most populated agglomeration in the southern hemisphere. For this purpose, we evaluated 30 individuals (age: 35.23 ± 8.26 years and BMI: 23.91 ± 3.4 kg/m2), from the general population of BA. The hypervariable regions V3-V4 of the bacterial 16S gene was sequenced by MiSeq-Illumina system, obtaining 47526 ± 4718 sequences/sample. The dominant phyla were Bacteroidetes, Firmicutes, Proteobacteria, Verrucomicrobia, and Actinobacteria. Additionally, we compared the microbiota of BA with other westernized populations (Santiago de Chile, Rosario-Argentina, United States-Human-microbiome-project, Bologna-Italy) and the Hadza population of hunter-gatherers. The unweighted UniFrac clustered together all westernized populations, leaving the hunter-gatherer population from Hadza out. In particular, Santiago de Chile?s population turns out to be the closest to BA?s, principally due to the presence of Verrucomicrobiales of the genus Akkermansia. These microorganisms have been proposed as a hallmark of a healthy gut. Finally, westernized populations showed more abundant metabolism related KEEG pathways than hunter-gatherers, including carbohydrate metabolism (amino sugar and nucleotide sugar metabolism), amino acid metabolism (alanine, aspartate and glutamate metabolism), lipid metabolism, biosynthesis of secondary metabolites, and sulfur metabolism. These findings contribute to promote research and comparison of the microbiome in different human populations, in order to develop more efficient therapeutic strategies for the restoration of a healthy dialogue between host and environment.Fil: Belforte, Fiorella Sabrina. Universidad Nacional de Lujån. Departamento de Ciencias Båsicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernandez, Natalie. Icahn School Of Medicine At Mount Sinai; Estados UnidosFil: Tonin Monzón, Francisco. Universidad Nacional de Lujån. Departamento de Ciencias Båsicas; ArgentinaFil: Rosso, Ayelen Daiana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Lujån. Departamento de Ciencias Båsicas; ArgentinaFil: Quesada, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Lujån. Departamento de Ciencias Båsicas; ArgentinaFil: Cimolai, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Lujån; ArgentinaFil: Millån, Andrea Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Cerrone, Gloria Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Frechtel, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Burcelin, Rémy. Inserm; Francia. Université Paul Sabatier; FranciaFil: Coluccio Leskow, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Lujån. Departamento de Ciencias Båsicas; ArgentinaFil: Penas Steinhardt, Alberto. Instituto Universidad de la Fundación "Héctor Barceló"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Lujån. Departamento de Ciencias Båsicas; Argentin

    Probiotic With or Without Fiber Controls Body Fat Mass, Associated With Serum Zonulin, in Overweight and Obese Adults—Randomized Controlled Trial

    Get PDF
    Abstract The gut microbiota is interlinked with obesity, but direct evidence of effects of its modulation on body fat mass is still scarce. We investigated the possible effects of Bifidobacterium animalis ssp. lactis 420 (B420) and the dietary fiber Litesse¼ Ultra polydextrose (LU) on body fat mass and other obesity-related parameters. 225 healthy volunteers (healthy, BMI 28–34.9) were randomized into four groups (1:1:1:1), using a computer-generated sequence, for 6months of double-blind, parallel treatment: 1) Placebo, microcrystalline cellulose, 12g/d; 2) LU, 12g/d; 3) B420, 1010CFU/d in microcrystalline cellulose, 12g/d; 4) LU+B420, 12g+1010CFU/d. Body composition was monitored with dual-energy X-ray absorptiometry, and the primary outcome was relative change in body fat mass, comparing treatment groups to Placebo. Other outcomes included anthropometric measurements, food intake and blood and fecal biomarkers. The study was registered in Clinicaltrials.gov (NCT01978691). There were marked differences in the results of the Intention-To-Treat (ITT; n=209) and Per Protocol (PP; n=134) study populations. The PP analysis included only those participants who completed the intervention with >80% product compliance and no antibiotic use. In addition, three participants were excluded from DXA analyses for PP due to a long delay between the end of intervention and the last DXA measurement. There were no significant differences between groups in body fat mass in the ITT population. However, LU+B420 and B420 seemed to improve weight management in the PP population. For relative change in body fat mass, LU+B420 showed a−4.5% (−1.4kg, P=0.02, N=37) difference to the Placebo group, whereas LU (+0.3%, P=1.00, N=35) and B420 (−3.0%, P=0.28, N=24) alone had no effect (overall ANOVA P=0.095, Placebo N=35). A post-hoc factorial analysis was significant for B420 (−4.0%, P=0.002 vs. Placebo). Changes in fat mass were most pronounced in the abdominal region, and were reflected by similar changes in waist circumference. B420 and LU+B420 also significantly reduced energy intake compared to Placebo. Changes in blood zonulin levels and hsCRP were associated with corresponding changes in trunk fat mass in the LU+B420 group and in the overall population. There were no differences between groups in the incidence of adverse events. This clinical trial demonstrates that a probiotic product with or without dietary fiber controls body fat mass. B420 and LU+B420 also reduced waist circumference and food intake, whereas LU alone had no effect on the measured outcomes.Peer reviewe

    The Gut Microbiota Regulates Intestinal CD4 T Cells Expressing RORγt and Controls Metabolic Disease

    Get PDF
    SummaryA high-fat diet (HFD) induces metabolic disease and low-grade metabolic inflammation in response to changes in the intestinal microbiota through as-yet-unknown mechanisms. Here, we show that a HFD-derived ileum microbiota is responsible for a decrease in Th17 cells of the lamina propria in axenic colonized mice. The HFD also changed the expression profiles of intestinal antigen-presenting cells and their ability to generate Th17 cells in vitro. Consistent with these data, the metabolic phenotype was mimicked in RORγt-deficient mice, which lack IL17 and IL22 function, and in the adoptive transfer experiment of T cells from RORγt-deficient mice into Rag1-deficient mice. We conclude that the microbiota of the ileum regulates Th17 cell homeostasis in the small intestine and determines the outcome of metabolic disease

    Getting to Know the Gut Microbial Diversity of Metropolitan Buenos Aires Inhabitants

    Get PDF
    In recent years, the field of immunology has been revolutionized by the growing understanding of the fundamental role of microbiota in the immune system function. The immune system has evolved to maintain a symbiotic relationship with these microbes. The aim of our study was to know in depth the uncharacterized metagenome of the Buenos Aires (BA) city population and its metropolitan area, being the second most populated agglomeration in the southern hemisphere. For this purpose, we evaluated 30 individuals (age: 35.23 ± 8.26 years and BMI: 23.91 ± 3.4 kg/m2), from the general population of BA. The hypervariable regions V3-V4 of the bacterial 16S gene was sequenced by MiSeq-Illumina system, obtaining 47526 ± 4718 sequences/sample. The dominant phyla were Bacteroidetes, Firmicutes, Proteobacteria, Verrucomicrobia, and Actinobacteria. Additionally, we compared the microbiota of BA with other westernized populations (Santiago de Chile, Rosario-Argentina, United States-Human-microbiome-project, Bologna-Italy) and the Hadza population of hunter-gatherers. The unweighted UniFrac clustered together all westernized populations, leaving the hunter-gatherer population from Hadza out. In particular, Santiago de Chile’s population turns out to be the closest to BA’s, principally due to the presence of Verrucomicrobiales of the genus Akkermansia. These microorganisms have been proposed as a hallmark of a healthy gut. Finally, westernized populations showed more abundant metabolism related KEEG pathways than hunter-gatherers, including carbohydrate metabolism (amino sugar and nucleotide sugar metabolism), amino acid metabolism (alanine, aspartate and glutamate metabolism), lipid metabolism, biosynthesis of secondary metabolites, and sulfur metabolism. These findings contribute to promote research and comparison of the microbiome in different human populations, in order to develop more efficient therapeutic strategies for the restoration of a healthy dialogue between host and environment

    Membrane estrogen receptor-α contributes to female protection against high-fat diet-induced metabolic disorders

    Get PDF
    BackgroundEstrogen Receptor α (ERα) is a significant modulator of energy balance and lipid/glucose metabolisms. Beyond the classical nuclear actions of the receptor, rapid activation of intracellular signaling pathways is mediated by a sub-fraction of ERα localized to the plasma membrane, known as Membrane Initiated Steroid Signaling (MISS). However, whether membrane ERα is involved in the protective metabolic actions of endogenous estrogens in conditions of nutritional challenge, and thus contributes to sex differences in the susceptibility to metabolic diseases, remains to be clarified.MethodsMale and female C451A-ERα mice, harboring a point mutation which results in the abolition of membrane localization and MISS-related effects of the receptor, and their wild-type littermates (WT-ERα) were maintained on a normal chow diet (NCD) or fed a high-fat diet (HFD). Body weight gain, body composition and glucose tolerance were monitored. Insulin sensitivity and energy balance regulation were further investigated in HFD-fed female mice.ResultsC451A-ERα genotype had no influence on body weight gain, adipose tissue accumulation and glucose tolerance in NCD-fed mice of both sexes followed up to 7 months of age, nor male mice fed a HFD for 12 weeks. In contrast, compared to WT-ERα littermates, HFD-fed C451A-ERα female mice exhibited: 1) accelerated fat mass accumulation, liver steatosis and impaired glucose tolerance; 2) whole-body insulin resistance, assessed by hyperinsulinemic-euglycemic clamps, and altered insulin-induced signaling in skeletal muscle and liver; 3) significant decrease in energy expenditure associated with histological and functional abnormalities of brown adipose tissue and a defect in thermogenesis regulation in response to cold exposure.ConclusionBesides the well-characterized role of ERα nuclear actions, membrane-initiated ERα extra-nuclear signaling contributes to female, but not to male, protection against HFD-induced obesity and associated metabolic disorders in mouse
    • 

    corecore