15 research outputs found

    Evaluating the Applicability of Biostimulated Calcium Carbonate Precipitation to Stabilize Clayey Soils

    Get PDF
    Clayey soils with medium to high plasticity are prevalent in several parts of the world, causing billions of dollars in damage annually to various civil infrastructures. Several ground-improvement techniques can be employed to counteract this issue. However, these methods are impractical in certain situations and unsustainable in others due to their economic and environmental impacts. Microbial-induced calcite precipitation (MICP) could provide a more sustainable alternative. Researchers have successfully used MICP to alter specific geotechnical properties of sands and silts. This research investigates the applicability of MICP via biostimulation to treat clayey soils with low to high plasticity. The goal is to determine the viability of this technique to alter the engineering behavior of clayey soils, especially given the low permeability of these soils. For this purpose, four soils were selected from four different locations in Idaho and Montana. The soils were selected such that their plasticity varied from low to high to study the effect of plasticity index on the effectiveness of MICP treatments. In addition to the four soils, three additional artificial mixes were studied to study the effect of clay content on MICP effectiveness. Both macroscale and microscale studies were conducted on untreated and biostimulated soils to observe strength gain, swelling reduction, and calcium carbonate precipitation. The results show that MICP via biostimulation would be a promising method to treat problematic clayey soils

    Evaluating the Effectiveness of Soil-Native Bacteria in Precipitating Calcite to Stabilize Expansive Soils

    Get PDF
    The use of chemical additives to stabilize expansive soils is a common practice. However, the environmental concerns associated with the greenhouse gas generation during the production of these chemicals have launched engineers in search of sustainable stabilization alternatives. Microbial induced calcite precipitation (MICP) is a bio-cementation technique that could be a potential solution to this problem. Typically, MICP is achieved via bio-augmentation; however, bio-stimulation was argued to be a more realistic alternative due to its field implementation potential. Hence, in this research study, two expansive soils with varying plasticity characteristics were examined to understand the potential of MICP in treating expansive soils. These two soils were subjected to MICP treatments using enrichment and cementation solutions. The treatment effectiveness was studied via response measures such as Atterberg limits, unconfined compressive strengths, one-dimensional swell test, and calcium carbonate precipitation. The results indicate that MICP has potential in stabilizing expansive soils and further research is warranted to explore this idea

    Studying the Relationship Between Indigenous Microbial Communities, Urease Activity, and Calcite Precipitation in Artificial Mixes of Clay and Sand

    Get PDF
    Microbial-induced calcium carbonate precipitation (MICP) is evolving as a new method of improving the mechanical properties of soil. This environmentally friendly technique is a bio-geo-chemical process where microbes play a key role in increasing soil strength through precipitating calcium carbonate. Past studies at Boise State University have indicated that MICP via bio-stimulation could be a viable alternative for expansive clayey soil treatments. However, these studies raised a new question about the relationship between soil composition, urease activity, and calcite precipitation. To answer this question, batch studies were conducted using autoclaved-sterilized sand mixed with different percentages of non-sterile natural clay and tested for urease activity. Moreover, to investigate the difference in urease activity between sand and clay bacterial communities, experiments were repeated on samples with different amounts of non-sterile sand and autoclaved-sterilized clay. MICP-treated clay/sand mixes were then evaluated for calcite precipitation. Our results showed that soil mixes with higher clay content have more urease activity and higher levels of calcite precipitation for both sand-autoclaved and clay-autoclaved soil mixes. Test results indicate that urease activity could potentially be used as an indicator of MICP performance in different soil compositions

    Evaluating Shallow Mixing Protocols as Application Methods for Microbial Induced Calcite Precipitation Targeting Expansive Soil Treatment

    Get PDF
    Expansive soils, also known as swell-shrink soils, undergo substantial volumetric changes due to moisture fluctuations from seasonal variations. These volumetric changes cause millions of dollars in damages annually. Microbial Induced Calcite Precipitation (MICP) is a promising soil improvement technique, which uses urease producing bacteria to precipitate calcium carbonate. In this study, a stabilization alternative for expansive soils was studied using MICP. Specifically, indigenous bacteria were stimulated by mixing enrichment and cementation solutions with expansive natural soils to precipitate calcium carbonate and make soil stronger and less expansive. This study examined three expansive soils with varying plasticity and mineralogical characteristics. Two protocols for shallow mixing were studied. In Protocol-1, soil samples were mixed with enrichment solutions at optimum moisture content and allowed to mellow for 1, 2, 3, and 4 days. In Protocol-2, soil samples were mixed with enrichment solutions at moisture content corresponding to 95% of maximum dry unit weight on the wet-side of a standard Proctor curve. Moisture was allowed to escape from the mix during the mellowing period under both protocols. Following the mellowing periods, the lost moisture is replaced with cementation solution to reach optimum moisture content, and the soil sample was compacted to its maximum dry unit weight. Unconfined compression strength test was used to evaluate the strength improvements due to treatments. The treatment effectiveness was also evaluated with measurements of calcium carbonate precipitation. The results show promise for this method as an alternative to current shallow stabilization methods. An increase in mellowing period for low and medium plastic soils was determined to be beneficial. The current results also showed that the presence of higher amounts of enrichment solution and addition of less cementation solution is not advantageous for this procedure based on the performance of Protocol-2

    Dating of the oldest continental sediments from the Himalayan foreland basin

    Get PDF
    A detailed knowledge of Himalayan development is important for our wider understanding of several global processes, ranging from models of plateau uplift to changes in oceanic chemistry and climate(1-4). Continental sediments 55 Myr old found in a foreland basin in Pakistan(5) are, by more than 20 Myr, the oldest deposits thought to have been eroded from the Himalayan metamorphic mountain belt. This constraint on when erosion began has influenced models of the timing and diachrony of the India-Eurasia collision(6-8), timing and mechanisms of exhumation(9,10) and uplift(11), as well as our general understanding of foreland basin dynamics(12). But the depositional age of these basin sediments was based on biostratigraphy from four intercalated marl units(5). Here we present dates of 257 detrital grains of white mica from this succession, using the Ar-40-(39) Ar method, and find that the largest concentration of ages are at 36-40 Myr. These dates are incompatible with the biostratigraphy unless the mineral ages have been reset, a possibility that we reject on the basis of a number of lines of evidence. A more detailed mapping of this formation suggests that the marl units are structurally intercalated with the continental sediments and accordingly that biostratigraphy cannot be used to date the clastic succession. The oldest continental foreland basin sediments containing metamorphic detritus eroded from the Himalaya orogeny therefore seem to be at least 15-20 Myr younger than previously believed, and models based on the older age must be re-evaluated

    Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for Southeast Asia

    Get PDF
    Sand samples from the mouths of the Red and Mekong Rivers were analyzed to determine the provenance and exhumation history of their source regions. U-Pb dating of detrital zircon grains shows that the main sources comprise crust formed within the Yangtze Craton and during the Triassic Indosinian Orogeny. Indosinian grains in the Mekong are younger (210-240 Ma) than those in the Red River (230-290 Ma), suggesting preferential erosion of the Qiangtang Block of Tibet into the Mekong. The Red River has a higher proportion of 700-800 Ma grains originally derived from the Yangtze Craton. 40Ar/ 39Ar dating of muscovite grains demonstrates that rocks cooled during the Indosinian Orogeny are dominant in both rivers, although the Mekong also shows a grain population cooling at 150-200 Ma that is not seen in the Red River and which is probably of original Qiangtang Block origin. Conversely, the Red River contains a significant mica population (350-500 Ma) eroded from the Yangtze Craton. High-grade metamorphic rocks exposed in the Cenozoic shear zones of southeast Tibet-Yunnan are minority sources to the rivers. However, apatite and zircon fission track ages show evidence for the dominant sources, especially in the Red River, only being exhumed through the shallowest 5-3 km of the crust since ̃25 Ma. The thermochronology data are consistent with erosion of recycled sediment from the inverted Simao and Chuxiong Basins, from gorges that incise the eastern flank of the plateau. Average Neogene exhumation rates are 104-191 m/Myr in the Red River basin, which is within error of the 178 ± 35 m/Myr estimated from Pleistocene sediment volumes. Sparse fission track data from the Mekong River support the Ar-Ar and U-Pb ages in favoring tectonically driven rock uplift and gorge incision as the dominant control on erosion, with precipitation being an important secondary influence. © 2006 by the American Geophysical Union

    Microbial-Facilitated Calcium Carbonate Precipitation as a Shallow Stabilization Alternative for Expansive Soil Treatment

    No full text
    Expansive soils generally recognized as swell-shrink soils have been a problem for civil infrastructure for a long time. Engineers are in search of sustainable stabilization alternatives to counter these problematic soils. Microbial-induced calcium carbonate precipitation (MICP) is a promising biocementation process that can improve the properties of expansive soil through calcium carbonate precipitation. Past research has shown promise for the use of MICP in mitigating swelling distress from expansive soils. In this research, MICP via biostimulation was attempted by mixing enrichment and cementation solutions with soils in an effort to develop a new alternative to shallow chemical stabilization. Three soils with varying clay contents (30%, 40%, and 70%) and plasticity characteristics were selected, and soils were treated by mixing with enrichment solutions followed by cementation solutions. Five different mellowing periods, three different curing periods, and two types of cementation solutions were studied to optimize the method. Treatment effectiveness was evaluated using unconfined compression tests, calcium carbonate tests, and free swell index tests. Results showed that an increase in the mellowing period beyond two days was not beneficial for any of the three soils tested in this research. It was determined that the best improvement was observed at two days of mellowing and seven days of curing

    Reconstructing the exhumation history of the Lesser Himalaya, NW India, from a multitechnique provenance study of the foreland basin Siwalik Group

    Get PDF
    This research presents the first multitechnique provenance study of the Siwalik Group in the Himalayan foreland basin in India, using the Jawalamukhi section, magnetostratigraphically dated at 13–5 Ma. Combined with provenance data from a Dharamsala Formation sedimentary section (21–13 Ma) located close by, it forms the longest temporally continuous record of Himalayan erosion in the Indian foreland basin. Sandstone petrography and heavy mineral analysis, conglomerate clast composition, Ar-Ar dating of detrital white micas, and Sm-Nd analyses on siltstones, conglomerate matrix and conglomerate clasts was undertaken to determine (1) shifts in source region through time and (2) changes in detrital lag times related to exhumation rates in the hinterland, together interpreted in the light of thrusting events. We interpret the data to show a slow down in exhumation rate of the Higher Himalaya by 16–17 Ma, after which time the locus of thrusting propagated south of the Main Central Thrust, and erosion of the low grade Haimanta Formation to the south became significant. The nonmetamorphosed Inner Lesser Himalaya breached its Haimanta cover by 9 Ma with the metamorphosed Inner Lesser Himalaya (Lesser Himalayan Crystalline Series) exhuming to surface by 6 Ma. This event caused sufficient disruption to established drainage patterns that all Higher Himalayan material was diverted from this location at this time

    A reinterpretation of the Balakot Formation; implications for the tectonic evolution of the NW Himalaya, Pakistan

    No full text
    The Balakot Formation of the Himalayan foreland basin in Pakistan was originally described as a greater than 8 km thick clastic red bed succession within which are stratigraphically intercalated four gray marl bands containing fossils dated at 55-50 Ma. On this basis, and the reported conformable contact with the underlying Paleocene Patala Formation, the Balakot Formation red beds were interpreted as tidal facies dated at 55-50 Ma, by greater than 20 Myr the oldest foreland basin sediments eroded from the metamorphic orogen. However, our new detailed structural mapping shows the Balakot Formation to be in tectonic contact with the underlying Patala Formation, and the marl bands to be structurally intercalated with the red beds. Hence neither the nature of the Balakot Formation lower contact nor the intercalated marl bands can be used to date the red beds. Our Ar/Ar dating of 257 individual detrital white micas from the Balakot Formation red bed sandstones shows that the red bed succession must be younger than 37 Ma, and we thus conclude that the first exposed foreland basin continental sediments eroded from the metamorphic mountain belt were deposited after 37 Ma, at least 15 Myr later than previously believed. These new structural, stratigraphic, and isotopic data from the Balakot Formation provide new constraints to the early tectonic evolution of the mountain belt, result in reassessment of the facies and provenance of the Balakot Formation, and force reconsideration of models of orogenesis, basin evolution, and the timing and diachroneity of India-Asia collision that are based on the original documentation of the Balakot Formation
    corecore