171 research outputs found
Heteroacenes
Issued as final reportNational Science Foundation (U.S
Experimental Evidence of Direct Exchange Interaction Mediating Intramolecular Singlet Fission in Weakly-Coupled Dimers
The electronic interaction between an optically active singlet state
() and a dark state of singlet multiplicity, known as correlated
triplet pair (), plays a crucial role in the effective transformation
from to during intramolecular singlet fission (iSF). This
process is understood through mechanisms such as direct exchange coupling and
incoherent processes that involve super-exchange coupling through
charge-transfer states. However, most insights into these mechanisms are
derived from theoretical studies due to the difficulties in obtaining
experimental evidence. In this study, we investigate the excited-state
interactions between and in spiro-conjugated iSF sensitizers
by employing transient two-dimensional electronic spectroscopy. This approach
allows us to focus on the early stages of the conversion from to
. Upon optical excitation, a superposition of and is
created, which gradually transitions to favor within the
characteristic time frames of iSF. The observed high-order signals indicate
circular repopulation dynamic that effectively reinitiates the iSF process from
higher energy electronic states. Our findings, supported by
semi-quantum-mechanical simulations of the experimental data, suggest the
presence of a direct iSF mechanism in the dimers, facilitated by weak
non-adiabatic coupling between and . This experiment provides
new insights into the equilibrium between the two electronic states, a
phenomenon previously understood primarily through theoretical models.Comment: 26 pages, 4 Figure
Wall Microstructures of High Aspect Ratio Enabled by Near‐Field Electrospinning
Near-field electrospinning (NFES) holds the potential to develop into a versatile additive nanomanufacturing platform. However, the impact of a variety of processing variables remains unresolved.Herein, the effect of solvents used to prepare suitable solutions for 3D microstructuring by electrospinning is studied. 3D straight walls of stacked fibers are fabricated using a layer-by-layer fiber deposition approach. The effect of the choice of substrate material is also explored. The results show that a high vapor pressure, and a low dielectric constant of the solvent, as well as a high substrate conductivity facilitate improved stacking of fiber layers. Utilizing these conditions, 3D stacked walls of polyethylene oxide are fabricated, and a maximum aspect ratio of 191.7 ± 52.6, while using a chromium/gold substrate and dichloromethane/methanol as the solvent is achieved
Three unique coordination geometries involving 1,2-dimethoxy-4,5-bis(2-pyridylethynyl)benzene
Reaction of the new ligand 1,2-dimethoxy-4,5-bis(2-pyridylethynyl) benzene with different metal centers under similar reaction conditions led to three distinct structure formation processes: molecular ring closure, dimerization, and polymer formation
Doubly Bridged Anthracenes: Blue Emitters for OLEDs
The photooxidative stability of a series of doubly bridged anthracenes was evaluated after their preparation via twofold macrocyclization of a bis(resorcinyl)anthracene. Lightfastness correlates with the energy levels of the highest occupied molecular orbital (HOMO), resulting in superior stability of the tetraesters compared to the tetraethers. The lengths and steric demand of the linker only plays a minor role for the ester-based compounds, which can be prepared in reasonable yields and thus tested in proof-of-concept organic light-emitting diodes. Double ester-bridging allows deep blue electro-luminescence, highlighting the importance of the choice of the functional groups used for macrocyclization.Deutsche Forschungsgemeinschaft
http://dx.doi.org/10.13039/501100001659Studienstiftung des Deutschen Volkes
http://dx.doi.org/10.13039/501100004350Peer Reviewe
Interplay of structural dynamics and electronic effects in an engineered assembly of pentacene in a metal–organic framework
Charge carrier mobility is an important figure of merit to evaluate organic semiconductor (OSC) materials. In aggregated OSCs, this quantity is determined by inter-chromophoric electronic and vibrational coupling. These key parameters sensitively depend on structural properties, including the density of defects. We have employed a new type of crystalline assembly strategy to engineer the arrangement of the OSC pentacene in a structure not realized as crystals to date. Our approach is based on metal–organic frameworks (MOFs), in which suitably substituted pentacenes act as ditopic linkers and assemble into highly ordered π-stacks with long-range order. Layer-by-layer fabrication of the MOF yields arrays of electronically coupled pentacene chains, running parallel to the substrate surface. Detailed photophysical studies reveal strong, anisotropic inter-pentacene electronic coupling, leading to efficient charge delocalization. Despite a high degree of structural order and pronounced dispersion of the 1D-bands for the static arrangement, our experimental results demonstrate hopping-like charge transport with an activation energy of 64 meV dominating the band transport over a wide range of temperatures. A thorough combined quantum mechanical and molecular dynamics investigation identifies frustrated localized rotations of the pentacene cores as the reason for the breakdown of band transport and paves the way for a crystal engineering strategy of molecular OSCs that independently varies the arrangement of the molecular cores and their vibrational degrees of freedom
Functionalized tetrapodal diazatriptycenes for electrostatic dipole engineering in n-type organic thin film transistors
V.R., F.S.B., S.H., M.M., M.-M.B., S.H., J.F., W.K., W.J., A.K., A.P., U.H.F.B., and K.M. acknowledge the German Federal Ministry of Education and Research (BMBF) for financial support within the INTERPHASE project (nos. 13N13656, 13N13657, 13N13658, 13N13659). V.R. thanks the German Research Foundation for financial support within the SFB1249 project and the Heidelberg Graduate School of Fundamental research.The authors also appreciate financial support by the German Research Foundation (grant ZH 63/39-1) and by the DAAD-ACEH Scholarship of Excellence (A.A.).A diazatriptycene‐based tetrapodal scaffold with thiol anchors enforces a nearly upright orientation of functional groups, introduced to its quinoxaline subunit, with respect to the substrate upon formation of self‐assembled monolayers (SAMs). Substitution with electron‐withdrawing fluorine and cyano as well as electron‐rich dimethylamino substituents allows tuning of the molecular dipole and, consequently, of the work function of gold over a range of 1.0 eV (from 3.9 to 4.9 eV). The properties of the SAMs are comprehensively investigated by infrared reflection absorption spectroscopy, near edge X‐ray absorption fine structure spectroscopy, and X‐ray photoelectron spectroscopy. As prototypical examples for the high potential of the presented SAMs in devices, organic thin‐film transistors are fabricated.Publisher PDFPeer reviewe
A fluorescent microporous crystalline dendrimer discriminates vapour molecules
A self-assembled crystalline microporous dendrimer framework (MDF) exhibits novel turn-on and ratiometric fluorescence upon exposure to solvent vapours. The donor–acceptor character, combined with the large surface area (>650 m2 g−1), allows the MDF to discriminate vapours of volatile solvents with turn-on and colour change of photoluminescence
Singlet exciton fission in a modified acene with improved stability and high photoluminescence yield
Abstract: We report a fully efficient singlet exciton fission material with high ambient chemical stability. 10,21-Bis(triisopropylsilylethynyl)tetrabenzo[a,c,l,n]pentacene (TTBP) combines an acene core with triphenylene wings that protect the formal pentacene from chemical degradation. The electronic energy levels position singlet exciton fission to be endothermic, similar to tetracene despite the triphenylenes. TTBP exhibits rapid early time singlet fission with quantitative yield of triplet pairs within 100 ps followed by thermally activated separation to free triplet excitons over 65 ns. TTBP exhibits high photoluminescence quantum efficiency, close to 100% when dilute and 20% for solid films, arising from triplet-triplet annihilation. In using such a system for exciton multiplication in a solar cell, maximum thermodynamic performance requires radiative decay of the triplet population, observed here as emission from the singlet formed by recombination of triplet pairs. Combining chemical stabilisation with efficient endothermic fission provides a promising avenue towards singlet fission materials for use in photovoltaics
- …